亚洲国产原创剧情av,亚洲日韩乱码中文无码蜜桃臀,国产亚洲精品第一综合另类灬免费观看国产精品视频,欧美专区在线视频,日韩一级黄色毛片,久草视频在线不卡,男人一边吃奶一边做爰免费视频,制服丝袜国产日韩亚洲欧美成人久久一区,伊人av无码av中文av狼人

佳學基因遺傳病基因檢測機構排名,三甲醫(yī)院的選擇

基因檢測就找佳學基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學基因準確有效服務好! 靶向用藥怎么搞,佳學基因測基因,優(yōu)化療效 風險基因哪里測,佳學基因
當前位置:????致電4001601189! > 檢測產品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準嗎

(1) 環(huán)境壓力是如何降低精子質量和降低男性生育能力的;(2)哪些化學元素會導致男性生殖系統(tǒng)的氧化應激和免疫遺傳學改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機制的變化相關,作為男性生殖條件的病理生理障礙的標志;(4)免疫遺傳性疾病的環(huán)境應激因素如何伴隨男性不育和反應;環(huán)境和遺傳危險因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責任編輯:佳學基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內容:
來了,就說兩句!
請自覺遵守互聯(lián)網相關的政策法規(guī),嚴禁發(fā)布色情、暴力、反動的言論。
評價:
表情:
用戶名: 驗證碼: 點擊我更換圖片

Copyright © 2013-2033 網站由佳學基因醫(yī)學技術(北京)有限公司,湖北佳學基因醫(yī)學檢驗實驗室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設計制作 基因解碼基因檢測信息技術部

99爱在线精品视频免费观看| 日韩精品人妻午夜一区二区三区 | 国产乱人视频免费观看| 欧美三级日韩综合| 中文无码在线加勒比| 噜噜噜久久亚洲精品国产品91| 久久亚洲春色中文字幕久久| 国产网友愉拍精品视频手机| 亚洲精品国产乱码久久久1区| 好男人看在线视频| 国产成人一区二区三区日韩精品人| 婷婷五月在线精品视频在线| 978ee亚洲色欲影院东京热| 亚洲午夜久久久久| 最大亚洲av手机在线观看| 日本无码观看一区二区三区 | 亚洲欧美一区在线| 日日狠狠久久偷偷色综合| 最近高清中文在线字幕观看6| 国产激情无码一区二区| 人人超碰91尤物精品国产| 最美情侣免费播放视频大全| 国产午夜精品一区二区三区极品| 欧美一性一乱一交一视频| 亚洲av无码乱码国产精品| 国产乱妇乱子在线播视频播放网站| 精品丝袜人妻久久久久久91| 亚洲成片在线观看京东热| 国产91久久精品久久精品| 国产人妖一区二区动漫黄片| 日本高清无卡码一区二区久久| 亚洲av男人的天堂精品| 国产成人综合亚洲精品| 日韩在线观看一区二区三区| 亚洲国产精品精华液999| 国产毛A片啊久久久久久按摩| 日韩囯产va精品一区二区久| 中年国产丰满熟女乱子正在播放 | 欧美XXXX做受欧美88| 欧美日韩加勒比精品一区| 国产高清亚洲精品gogo| 国产一区二区三区自产| 制服丝袜有码在线最新更新| 最新亚洲国产综合V| 老司机精品午夜福利视频| 91久久精品无码一区二区大| 美女国产毛片a区内射| 成人欧美日韩一区二区三区| 精品人妻少妇一区二区av| 国产国产午夜福利视频在线观看| AV波多野结衣在线网站| 日韩精品免费福利| 国产一区二区三区精品91| 婷婷综合缴情亚洲AV| 精品免费视在线视频观看| 久久丰满熟女精品国产| 特级毛片全部免费播放| 亚洲人成无码网站久久99热国产| 国产亚洲视频网站| 久久伊人成色777综合网| 网站资源多国产av| 国产成人无码精品午夜福利a| 波多野结衣AV高潮在线看| 一级做性色a爱片久久片| 亚洲一区日韩高清| 欧美国产伦久久久久| 成人av影片一区二区三区| 成年人在线免费观看毛片| 玩弄大乳奶水中文字幕电影| 久久国产乱子伦免费精品| 成人国产精品秘片多多| 九九九热精品免费视频观看| 免费中文无码AV动作片| 美日韩精品无码?v专区久久久| 久久久亚洲欧洲日产国码606| 欧美亚洲午夜精品福利| 日本乱熟人妻精品中文字幕 | 91极品尤物在线观看播放| 欧美日韩国产在线观看一区二区| 精品国产麻豆一区二区三区| jizz中国免费在线播放麻豆视频| 日韩欧美永久精品免费nba | 无码成人精品久久久| 久久精品人人人人人人| 久久露脸国语精品国产91| 国产成人综合亚洲精品| 色噜噜噜噜噜国产91免费| 国产xxxx在线观看视频| 真实国产乱人伦在线视频播放| 国产欧美日韩一区2区| 日韩av中文一区二区三区| 国产最爽乱淫视频国语对白 | 成人一区二区三区黑人欧美| 欧美日韩国产综合视频二区| 男人天堂网站在线| 成人做爰www看视频软件| 久久国产精品高清77777| 99久久精品国产综合| 欧美亚洲另类在线日韩国产| 清纯唯美亚洲综合网| 亚洲国产制服欧美日韩中文| 国产日韩亚洲欧洲一区二区三区| 国产黑色丝袜免费网站| 久久国产成人一区二区三区| 欧美黑人又粗又大XXXX| 午夜放荡视频人与禽| 免费观看国产日本一区二区| 日本精品中文一区二区三区| 亚洲国产婷婷六月丁香| 免费人成毛片动漫在线播放| 激情不卡在线免费av| 亚洲色哟哟在线观看| gogo人体gogo西西大尺度高清 | 无码之国产精品网址蜜芽| 揭秘知花凛AV在线播放| 国产欧美在线亚洲一区| 国产大全久久激情综合电影| 精品午夜国产福利观看| 久久青青草原精品国产| 亚洲人成人无码WWW影院| 成人做爰www看视频软件| 不卡精品xxx在线观看| 国产高清在线精品二区 | 中国XXXXXL196_MAY18_ | 男人用嘴添女人下身免费视频| 中文字幕中文字幕第一页 | 亚洲精品91久久久一区二区| GOGOGO免费视频观看中文| 最近中文字幕免费mv| 久久精品久久国产| 欧美亚韩一区二区三区| 国产成人人人97超碰超爽8| 国产一级黄夜色AV| 福利姬在线喷水一区二区| 国产精品亚洲а∨天堂免| 国产精品人妻无码久久久久| 制服丝袜一区日韩| 中文字幕无线观看中文字幕| 免费一区二区无码av| 精品人妻www一区二区三区 | 成在人线av无码免费看网站| 精品超碰精品无码免费| 日本少妇高潮喷水视频| 日本一道本高清一区二区| 久久久国产一区二区三区四区小说| 欧美激情视频一区| 色噜噜狠狠综曰曰曰| 精品国产一区二区三区四区阿崩 | 香蕉久久国产超碰青草互動交流| 亚洲人成伊人成综合网久久久| 国产精自产拍久久久久久蜜 | 日韩免费无码一区二区视频| 俺去俺来也www色官网| 亚洲第一区欧美国产综合86| 亚洲一区国产二区日本三区| 久久免费黄色精品| 国产99re在线观看只有精品| 国产亚洲女人久久久毛片| 久久影视这里只有精品国产 | 在线观看亚洲精品国产福利片| 99国产精品人妻无码免费农村| 91超碰伊人五月天| 男人把Ji大巴放进女人免费视频| 久久人人爽人人爽人人片ⅴ| 成人毛片一区二区三四区| 日韩美女在线观看一区| 最新精品国偷自产在线| 中文字幕精品无码2021| 国精产品久拍自产在线网站| 国产精品无码免费视频二| yw亚洲a∨无码乱码在线观看| 一个人看WWW在线视频| 国产精品亚洲综合第一页| 亚洲另类日本久久久精品| 精品无码成人久久久久久| 色综合网天天综合色中文| 久久久精品午夜免费不卡 | 一个人看的免费视频WWW中文字幕| 国产乱子伦在线一区二区| 69国产精品免费视频| 97午夜福利影视大全| 中文资源在线官网| 四川少BBB搡BBB爽爽爽| 国产又粗又长免费视频| 欧洲人妻无码视频在线| 一级爽爽爽影院毛片体验区| 欧美人与动xxxxz0oz| 亚洲日韩在线视频| 亚欧美无遮挡HD高清在线视频| 国产精品高清99| 人人妻人人澡人人爽曰本| 在线a亚洲v天堂网2019无码| 亚洲综合久久一区二区| 亚州日韩穿丝袜在线| 人妻少妇免费无码专区| 亚州中文字幕无码中文字幕| 人妻人人澡人人添人人爽| 久久噜噜噜精品国产亚洲综合| 最新日韩制服丝袜电影网站| 国产aⅴ大篇网站| 亚洲码欧美码一区二区三区| 久久国内精品自在自线91| 久久免费看黄a级毛片暴力| 在线观看国产一区亚洲,日本1| 国产免费小黄片视频| 精品亚洲国产成人AV在线| 精品伊人久久大香线蕉综合| 国产a级毛片久久久久久粗大| 亚洲国产成人久久综合人| 91天堂视频在线观看| 东京热无码一区二区AV| 极品少妇弄得99久久精品| 亚洲熟女诱惑一区二区| 99久久精品国产一区二区三| 亚洲熟女精品久久久av| 人人爽人人爽人人片AV东京热 | 亚洲av中文无码字幕色最| 乱码精品一区二区三区在线观看| 国产成人无码精品久久久免费| 中国美女一级毛片免费播放 | 国精产品久拍自产在线网站| 伊人色综合久久天天五月婷| 午夜免费看片网站| 国产精品性色av一区二区三区| 欧美成人WWW免费全部网站| 日产欧美国产日韩精品| 真实亲子乱一区二区| 成人欧美一区二区三区| 免费的黄色一级视频| 久久天天躁狠狠躁夜夜AV不卡| 国产日韩丝袜美女视频网站| 一区二区三区四区中文字幕在线| 欧美精品一区视频| 天天干天天操天天干| 亚洲国产综合99久久久精品| 久亚洲AⅤ无码精品夜夜嗨| 狠狠噜天天噜日日噜无码| 亚洲精品一区二区成人| 精品视频一区二区三区在线播放| 国产ts系列紫苑吊带网袜| 亚洲熟女精品久久久av| 成人18+视频在线观看| 夜夜爽日日澡人人添蜜臀| 久久人人97超碰国产精品| 欧洲av无码放荡人妇网站| 在线观看无码不卡AV中文| 国产免费一级成人av| 成人春色在线观看免费网站| 欧美午夜特黄AAAAAA片| 89碰碰碰人妻无码免费看| 亚洲中文无码AV永久主页| 五月国产综合视频在线观看| 插出白浆的动漫在线观看| 伊人久久大香线蕉无码不卡| 国语久久久精品成人欧美日韩国产中文大片 | 中文天堂在线最新版www| 日韩一级无码性爱视频| 九九九热精品免费视频观看| 噜噜av一区二区| 久久综合婷婷五月| 国语精品福利一区二区久久| 亚洲国产综合自在线身类| as四虎丁香五月天| 亚洲性夜夜天天天| 国产成人无码专区| 欧美一区二区三区成人片在线| 久久久久久曰本av免费免费| 欧美毛多水多黑寡妇| 久久综合一区网址| 成人一区二区免费视频| 河北真实伦对白精彩脏话| 成人欧美一区二区三区| 丰满少妇人妻无码| 99久久久无码国产精品| 亚洲欧美日韩一级在线| 亚洲午夜成激人情在线影院| 日韩欧美亚洲中文乱码高清| 好大好湿好硬顶到了好爽视频| 亚洲春色AV无码专区在线播放| gogo人体gogo西西大尺度高清| 久久综合AV免费观看| 日韩欧美亚洲三级在线| 免费人成电影免费网站| 亚洲妇女黄色高潮视频| 麻豆国产精品免费在线观看| 亚洲AV日韩AⅤ无码电影| 99r少妇极品熟妇人妻无码| 爆乳美女高潮喷水动态图| 深夜放纵内射少妇| 国产精品18久久久久久vr| 亚洲国产精品日韩av专区动漫| 国产h片在线免费观看视频| 另类欧美亚洲日本| 丝袜脚国产交足视频| 婷婷激情综合亚洲| 欧美日韩国产大陆一区二区| 精品中文字幕1区,2区,3区| 亚洲无码真人精品视频自拍| 国产免费一区二区三区视频| 一区二区免费高清观看国产丝瓜| freesex性中国熟妇| 国产欧美一区二区精品性色99 | 天天AV天天翘天天综合网| 国产精品亚洲一区二区三区不卡| 中文国产日本在线播放免费| 八区精品色欲人妻综合网| 成人区人妻精品一熟女| 国产最爽乱淫视频国语对白| 国产日韩欧美黄片一区二区| 久久精品无码观看TV| 日韩精品免费福利| 疯狂做爰xxxⅹ高潮潮喷小兰花| 国产精品欧美久久二区66| 亚洲中文人妻字幕视频| 无码国产精品一区二区免费久久 | 免费精品久久久久久成人av| 欧美黄片中文字幕在线观看| 成年人在线免费观看毛片| 无码专区亚洲制服丝袜| 中文字幕a∨无码一二三区电影| 国产在线精品一级A片| 欧美丰满熟妇xxxx性| 日韩av无码制服丝袜| 亚洲日本va午夜中文字幕一区| 亚洲中文无码AV永久主页| 精品乱色一区二区中文字幕| 久久无码人妻影院| 久久久精品国产精品久久| 久久99国产精品1区二区| 成人欧美日韩一区二区三区| 制服丝袜一区日韩| 人妻久久一区二区三区精| 丰满少妇高潮在线| 欧美精品人爱欧美精品| 免费观看av一区二区三区| 国产AV旡码专区亚洲AV| 久久欧美精品三级| 免费的性开放网站交友网站 | 免费只有精品久久久久国产综合精品| 亚洲国产福利一区二区三区| 制服丝袜一区日韩| 国产精品白嫩精品| 成人av在线一区二区三区| 香蕉久久夜色精品国产2021| 天天爽天天爽天天爽| 无码日韩精品一区二区免费暖暖| 日本高清一道一区二区三区| 日韩亚洲人成影院| 久久99精品久久久久久hb| 免费无码黄网站在线看| 久久国产亚洲欧美久久| 男人用嘴添女人下身免费视频| 日韩在线精品一区| 久久国产对白老熟女| 精品无码AV人在线观看| 国产日韩欧美亚洲第一区| 中文字幕一区二区三区不卡| 成人激情在线播放| 国产一级精品一区二区三区| 久久久精品无码视频| 日韩精品免费福利| 国产亚精品毛片ⅤA一区二区三区| 夜鲁鲁鲁夜夜综合视频 | 亚洲日本一区二区一本一道| 人妻无码AⅤ中文字幕日韩| 无码h黄肉动漫在线观看| 亚洲av无码乱码国产精品| 亚洲变态另类专区丝袜自拍| 中文乱片A片AAA毛片| 揭秘知花凛AV在线播放| 成年美女黄网站18禁| 精品国产一区二区三区久久影院| 国产精品亚洲一区二区z| 9 9久久精品无免国产….. | 偷拍亚洲欧洲一二三| 欧美日韩加勒比精品一区| 国产AV熟女一区二区| 97精品国产一区二区三区| 一个人的视频在线观看WWW免费无码| 狠狠爱ady亚洲色| 亚洲av禁18成人毛片一级在线 | 蜜臀精品久久久久一区二区三区| 色狠狠色综合久久久绯色图| 一个人看WWW在线视频| 亚洲乱码日产一区三区| 国语刺激对白勾搭视频在线观看 | 亚洲A∨无码无线在线观看 | 国产成人精品无码一区二区| 久久只有这里有精品热久久| 思思久久96热在精品国产 | 亚洲高潮无码久久久久久| 啊灬啊灬啊灬快灬深一区2区 | 成人国产亚洲欧美成人综合网| 久久精品亚洲蜜臀av不卡| 精品国产Ⅴ无码大片在线观看| 精品一区二区三区国产在线 | 狠狠色综合久久丁香婷婷| 无码AV蜜臀AⅤ色欲在线观看| 尺度av无码专区| 精品无码久久久久久无码专区| 国产视频亚洲一区| 在线观看成人免费视频不卡| 日韩va无码中文幕不卡| 老子影院午夜精品无码| 亚洲精品亚洲国产3区| AV成人无码无在线观看| 欧美日韩国产人妖色视频| 91青青青国产在观免费影视| 久久久青青久久国产精品| 国产欧美日韩综合在线观看| 亚洲无码一区视频了吗| 好男人好社区好资源在线 | 欧洲精品VA无码一区二区三区| 国产精品96久久久久久| 国产一在线精品一区在线观看| 用舌头去添高潮无码视频| 国产成人精品 在线观看| 午夜福利一区二区在线播放| 97精品国产一二三产区| 精品久久一区二区乱码| 96在线精品视频免费观看| 中文字幕中文字幕第一页| 中文字幕欧美三级精品| 成人午夜激情自拍| 91国拍精品色嫩亚洲一区偷拍| 亚洲国产午夜精品理论片在线播放 | 尹人香蕉久久99天天拍| 免费无码不卡高清三级片| CaoPoron在线视频| 全免费又大粗又黄又爽少妇片| 俺去俺来也www色官网| 日本精品一区二区不卡免费| 日韩AV影院在线观看| 伊人av综合网鸭子av| 老男人久久青草AV高清| 亚洲码欧美码一区二区三区| 中文字幕不卡欧美日韩免费| 亚洲国产欧美日韩欧美特级| 内射国产内射夫妻免费频道| 欧美成aⅴ人高清免费观看| 亚洲夜夜欢A∨一区二区三区| 日韩欧美国产综合在线播放| 人妻中文乱码在线网站| 亚洲愉拍自拍视频一区网手机版 | 国产性色αv视频免费| 不卡av手机在线免费观看| 亚洲一区二区三区在线看| 国产亚洲一区二区精品张柏芝| 成人国产精品秘片多多| 曰韩Av在线播放| 久久人人97超碰国产精品| 无码人妻斩一区二区三区| 榴莲网站在线观看| 亚洲av成人片色在线观看高潮| 欧美成人AA大片| 亚洲国产精品原创巨作AV| 亚洲乱码日产一区三区| 国产日韩成人一区二区三区| 久久久久国产精品熟女影院| 欧美性受XXXX白人性爽| 亚洲AⅤ无码精品一区二区三区| 国产精品美女久久久久久久| 国语自产精品视频在线九九| 国产精品乱码不卡在线观看| 无码AV一区二区三区无码| 日本国产三级片免费观看| 成人久久18免费网站入口| 国产毛片精品一区二区**| 欧洲无码一区二区三区在线观看| 精品久久一区二区乱码| 亚洲人成网亚洲欧洲无码| 亚洲精品乱码久久久久99| 国产成人精品亚洲精品| 2020精品国产自在现线官网| 久久久久国色AV免费观看性色| 1769成人国产精品视频| 中文字幕欧美三区在线观看| 红桃视频一区二区三区| 久久丁香五月天综合网| 少妇被粗大的猛烈进出69影院一| 亚洲一卡2卡3卡四卡老狼| U91大神在线观看精品无码| 成年无码a√片在线观看| 无码精品人妻一区二区三区AV| 久久99精品久久久久久久不卡| 欧美激情综合五月| 亚洲精品中文字幕午夜在线| 日韩精品在线视频中文字幕 | 久久精品无码观看TV| 欧美精品日韩精品一区二区| 91亚洲国产日韩在线成人| 精品国产这么小也不放过| 日日狠狠久久偷偷色综合| 强奷漂亮的夫上司犯在线观看| 激情不卡在线免费av| 丰满岳妇乱一区二区三区| 午夜福利免费区在线观看| 狠狠色噜噜狠狠狠狠97| 国产激情无码一区二区| 日韩精品亚洲人旧成在线| 精品免费国产观看| 国产亚洲日韩欧美另类第八页| 亚洲精品无码中文字| 国产日韩丝袜美女视频网站| 亚洲爆乳少妇无码激情| 日韩国产综合在线| 2018久久精品免费视频| 国产成人拍拍拍高潮尖叫| 不卡中文字幕中文无码| 青青草国产午夜精品| 国产成人无码一二三区视频| 99国产一区二区三区亚洲| 在线看片免费人成视频播| 一本一道?Ⅴ无码中文字幕| 国产片无码日韩精品| 久久亚洲春色中文字幕久久| 国产欧美久久一区二区三区| 狼人大香伊蕉在人线国产| 午夜福利a 级在线| 香港台湾免费经典AV毛片| CaoPoron在线视频| 免费人成电影免费网站| 精品一区二区三区免费视频| 91精品在线欧美| 国产亚洲av片亚洲| 欧美国产日韩在线三区| 99久久精品国产一区二区蜜芽| 国产精品乱子乱XXXX| 国产精品久久久久亚洲精品| 欧美日韩精品一区二区在线播放| 天堂va欧美ⅴa亚洲va在线| 100国产精品人妻无码| 国产99九九久久无码熟妇| 麻豆最新国产AV原创精品| 黄色毛片网站国产| 国产男女视频在线免费观看| 人妻少妇免费无码专区| 欧美日韩国产第一页精品| 国产版无码理伦片专区| 国产欧美在线亚洲一区| 办公室艳妇潮喷视频| 国产成人无码一二三区视频| 精品国产中文字幕乱码免费| 国产精品亚洲综合第一页| 日韩无码4k一区二区| 三级少妇自拍中文| 秋霞无码久久一区二区 | 欧美人妻福利精品一区二区| 国产精品18欠久久久久久 | 久久久亚洲欧洲日产无码AV | 亚洲国产午夜精品理论片在线播放| 欧美亚洲另类AⅤ图一区二区| 精品一区中文字幕一区二区三区 | 国产在线无码AV| 日韩精品人成在线播放| 日韩精品无码999一区二区三区| 便劲快到高潮了国产对白在线| 国产三级久久精品三级| 亚洲成人日本高清| 亚洲成av人片在线观看| 免费人成在线观看网站| 国产欧美一区二区三区日韩| AV在线一区二区精品| 久久久中日AB精品综合 | 秋霞无码久久一区二区 | 亚洲变态另类av一区二区三区| 精品无码久久久久久无码专区| 乱精品一区字幕二区| 国内精品伊人久久久久妇| 免费视频专区一国产盗摄| 精品国产免费一区二区三区香蕉 | 人妻无码AⅤ中文系列久久免费| 免费人成电影免费网站| 日本精品少妇一区二区三区| 91精品国产91久久久久| 国产高清免费视频| 国产河南妇女毛片精品久久一| 最新国一区二区三区精品| 无码日韩综合一区二区三区| 国产成人精品亚洲精品| freesex性中国熟妇| 少妇人妻丰满做爰xxx| 久久九色综合九色99伊人| 色综亚洲日本w在线| 国产精品拍在线天天更新| av中文无码乱人伦在线观看| 精品国产一区二区三区mp4 | 超碰成人人人做人人爽| 黄色午夜欧美视频| 亚洲人成无码网国产软件| 国产av巨作情欲放纵| 日韩一级黄色毛片| 在线日韩AV永久免费观看| 特级毛片全部免费播放| 日韩精品国产精品第一页| 中文字幕熟妇人妻在线视频| 国产乱码日韩一区二区三区| 日韩欧美永久精品免费nba| 国产精品无码一区二区三区高潮| 日韩,欧美,一区二区三区 | 亚洲精品在线网站| 成人网站亚洲二区乱码| 丁香五月亚洲中文字幕| 亚洲视频 中文字幕 欧美在线| 日韩av手机在线观看一区二区| 爱情岛论坛首页永久入口| 国产精品无码一区二区三区在| 好久被狂躁A片视频无码免费视频| 色偷偷AV亚洲男人的天堂| 亚洲精品无码久久毛片| 制服肉丝袜亚洲中文字幕| 色呦呦在线免费观看| 狠狠噜天天噜日日噜无码| 成人一区二区免费视频| 日韩高清每日更新在线| 韩国午夜精品福利视频| 新版中文在线资源| 久久久AV波多野一区二区| chinese乱子伦videos| 精品毛片久久一二三区| 久久人人爽人人爽a大片| 一区二区三区精品在线| 久久久中日AB精品综合| 亚洲熟妇AV日韩熟妇AV| 久久久青青久久国产精品| 无码人妻精品一区二区蜜桃百度| 一级特黄特交牲大片| 综合激情婷婷丁香五月蜜桃| 亚洲欧美aⅴ精品一区二区| 精品一区二区国产在线观看| 亚洲精品成人久久av| 免费无码黄在线观看www| 国产精品特级毛片一区二区三区| 最近更新2019中文字幕高清| 亚洲高清一区二区欧美 | 国产精品久久久久久52avav| 日韩精品一区二区中文在线观| 插出白浆的动漫在线观看| 成人午夜激情自拍| 一区二区三区鲁丝不卡麻豆| 欧美日韩国产看片一区二区 | 毛片基地a久久国产精品| 热99re久久精品国产99热| 亚洲av无码成h人动漫在线观看| 久久精品久久国产| 国产成人一区=区| 国产一区二区三区不卡欧美| 97人人超碰国产精品| 免费观看国产精品视频大全| 亚洲狠狠婷婷综合久久久久| 亚洲精品丝袜国产字幕久久| 日韩欧美伊人久久大香线蕉| 精品乱色一区二区中文字幕 | 日韩一区久久久久久久| 亚洲愉拍自拍视频一区网手机版 | 最新亚洲春色AV无码专区| 91极品尤物在线观看播放| 日本无码电影一区二区在线观看 | 欧美日韩一区二区精彩视视频 | av亚洲产国偷v产偷v自拍| YY111111少妇无码理论片| 久久亚洲中文字幕精品一区 | 一区二区三区在线免费| 国产黄片免费大全| 国产精品久久一级c片| 亚洲av无码一区二区高潮喷水| 久久久久久一级成人毛片| av在线播放一本久| 久久人人爽人人人人片av| 日本一本在线中文字幕| 国产亚洲综合区成人国产| 香蕉久久夜色精品国产2021| 中日无码双飞片大全| 超碰人人操天天干| 香蕉欧美大胸视频在线播放| 亚洲日韩Aⅴ无码精品放毛片| 日本乱码伦十八在线观看| 亚洲国产成人久久综合人| 国产欧美日韩免费| 精品一区二区三区四区五区高 | 亚洲区二区三区香| 精品免费视在线视频观看| 精品久久一区二区乱码| 国产日韩欧美亚洲第一区| 久久亚洲道色宗和久久| 国产精品亚洲一区二区在线观看| 91极品尤物在线观看播放| 青草国产精品久久久久久| 国产精品人妻系列21P| 免费精品国自产拍在线不卡| 精品愉拍自拍视频| 中文字字幕人妻中文| 精品AV无码国产一区二区| 强操中文字幕在线观看| 影音先锋色AV男人资源网| 激情啪啪视频国产免费| 青草国产在线视频| 亚洲av中文无码乱人伦| 在线免费观看电影| 无码av免费一区二区三区四区| 在线观看精品国产福利片一香蕉人…`| 色噜噜狠狠色综合AV| 欧美精品一区二区精油| 久久精品亚洲乱码中文字幕最| 日韩av中文一区二区三区| 亚洲色大成网站www永久在线观看| 无码国产拍揄自揄精品视频| 婷婷激情综合亚洲| 日韩国产欧美一区二区三区四区 | 四川少妇WBBBB搡BBBB嗓| 国产高清视频免费人人爱| 国产一区二区精品丝袜| 影视自拍高清少妇| 国产精品无码久久综合日韩| 亚洲国产一区二区a三级片| 日本一区二区资源在线观看| 中文乱码字幕国产中文乱码| 欧美国产日韩A在线视频| 国产女主播福利一区二区| 91精品国产白丝无码网站| 无码aⅴ精品日本无码久久| 欧美日韩久久久久中文字幕一区 | gav成人免费一区二区| 国产一区二区免费在线观看| 国产一级二级精品毛片| 日韩人妻精品无码一区二区三区| 国产区精品一区二区不卡中文| 久久国产精品99精国产| 国产精品人妻久久无码不卡| 精品v精品国产91久久久久| av网站在线免费看| 欧美最爽乱婬视频免费看| 国产三级韩国三级日本三级| 偷拍亚洲欧洲一二三| 国产成人av一区二区三区毛片| 伊人久久大香线蕉综合75| 国产AV极品嫩模| 人妻无码AⅤ中文系列久久免费| 伊伊综合在线视频无码| 亚洲日本中文字幕乱码在线| 亚洲av无码成h人在线观看| 变态另类AV天堂综合网| 最近中文字幕国语免费高清4| 亚洲精品久久无码日韩绯色| 亚洲午夜性猛春交xxxx| 久久精品人妻少妇一区二区三区| 精品福利网站国产| 加勒比无码一区二区三区| 性做爰A片欧美激情艳妇20P | AAA国产精品无码免费在线观看| 国产精品一区二区AV不卡| 国产最新黄色视频在线播放| 全免费又大粗又黄又爽少妇片| 久久丰满熟女精品国产| 亚洲精品无码一区二区三区久久久| 久久青草精品欧美日韩精品| 国产成人自拍在线播放| 亚洲国产小视频在线观看| 日韩av中文字幕亚洲精品| 日韩欧美一区二区三区视频| 亚洲Av有声小说一区二区| 国产精品久久久久香蕉| 欧美日韩在线一区二区三区| 欧美伊人精品在线| 一级特黄特交牲大片| 欧美亚洲午夜精品福利| 亚洲人人爽人人爽人人片 | 国产精品系列久久丝袜| 中文无码成人免费视频在线观看| 99热这里只有精品最新地址获取| 午夜寂寞视频无码专区| 日韩~欧美一中文字幕| 青青草99久久精品国产综合| 精品一区二区三区免费视频| 狠狠噜天天噜日日噜无码| 久久久久国色AV免费观看性色| 国内国外日产一区二区| 欧美老少妇最爽在线视频网站| 国产欧美一区二区视频在线播放| 国产XXXX视频在线观看免费| 欧美午夜精品一区二区蜜桃_| 久久综合日韩亚洲精品色| 亚洲日韩欧美一区二区三区| 国产99九九久久无码熟妇| 亚洲?v无码专区亚洲?v桃花桃| 猫咪av成人永久网站| 国产精品人妻无码久久久久| 69国产精品免费视频| 国产精品亚洲综合无码}| 亚洲成AV人影片在线观看| 久久国产电影三级片中文字| 久久国产超碰女女AV| 日韩视频在线第一页免费| 动漫精品一区二区三区视频| 免费黄色一级a毛片在线播放| 18禁美女裸体无遮挡免费观看国产| 欧美一区日韩二区国产三区| 免费不卡国产精品午夜福利在线| 国产情侣作爱视频免费观看| 亚洲人成电影一区二区在线| 亚洲国产精品区一区二区三区 | 久久夏同学国产免费观看| 亚州一区二区三区久久AA| 日韩不卡1卡2卡三卡网站| 日韩国产综合在线| 久久久久久久成人午夜精品福利| 国语自产偷拍精品视频偷| 色8噜噜噜噜久久婷婷| AV无码欧洲亚洲电影网| 久久久精品午夜免费不卡 | 精品三级综合少妇| 国产精品久久毛片A片| 精品无人乱码一区二区三区的特点 | 伊人精品成人久久综合97| 国产成人无码免费直播| 国产亚洲综合区成人国产系列| 在线视频中文字幕乱人伦| 不卡中文字幕中文无码| 日韩中文字幕成人av网站| 国产在线无码不卡影视影院| 疯狂做爰xxxⅹ高潮潮喷小兰花| 99精品久久精品一区二区| 亚洲日韩精品av成人波多野| 亚洲一级黄色三级片| 国产婷婷久久久久久| 欧美亚洲中文字幕高清 | 久久精品国产亚洲av蜜色| 亚洲国产欧美另类日韩丝袜| 中文字幕av中文字无码亚| 日韩成人AV无码一区二区三区| 蜜芽av在线新地址| 乱人伦人妻中文字幕不卡| 一区二区三区无码毛片真人| 国产毛片精品一区二区**| 精品人妻无码中字系列| 亚洲日本Va午夜在线电影| 欧美精品日韩精品一区二区| 亚洲日韩AV无码中文| 亚洲熟女综合色一区二区三区四区| 国产精久久久久无码AV| 国产精品美女久久久网av| 天天躁久久躁日日躁| 午夜a级成人免费毛片中文字幕 | 国产免费观看久久黄av片| 亚洲精品国产精品制服丝袜| 亞洲免費人成在線視頻觀看 | 亚洲熟妇AV日韩熟妇AV| 日本无码观看一区二区三区| 中文字幕无码一区二区免费| 免费成人日韩精品视频| 另类亚洲色大成网站| 欧美孕交VIVOESTV另类| 亚洲国产欧美一区二区图片| 人妻少妇精品一区三区久久| 亚洲欧洲日韩av在线| 亚洲成年网址青青草原| 亚洲精品专区在线观看| 日韩 一区二区 在线观看| 国产在线视频无码不卡人黑| 欧美色综合天天久久综合精品 | 亚洲欧美日韩国产三区| 狠狠色欧美亚洲狠狠色WWW| 精品人妻少妇一区二区av| 日韩精品国产精品一二三四在线| 国产午夜影视大全免费观看| AV无码欧洲亚洲电影网| 精品国产这么小也不放过| 欧美午夜特黄AAAAAA片| 久久精品免试视看国产成人 | 日韩av中文一区二区三区| 一级特黄大片欧美久久久| 亚洲av男人的天堂精品| 久久三级中文欧大战字幕| 精品一区二区三区国产区| 国产河南妇女毛片精品久久一 | xxx国产性按摩www性爽欧美| 日韩亚洲欧美在线com| 蜜芽尤物原创AV在线播放| 在线日韩一区二区三区不卡| 欧美专区一区二区在线观看| 国产专区一区二区三区免费| 外国人做爰又粗又大im| 国产片无码日韩精品| 久久久久99国产精品片| 丁香五月色情婷婷在线观看| 久久综合日韩亚洲精品色| 久久久久久人妻一区二区| 69亚洲日本va中文字幕婷婷| 久久天天拍天天爱天天躁| www.日本国产在线观看| 国产播放隔着超薄丝袜进入| 中国少妇黑人xxxx| 国产丝袜不卡一区二区| 国产乱妇乱子在线播视频播放网站| 无码av免费一区二区三区四区| 国产欧美日韩一区二区国产精品专区 | 国产在线aaa片一区二区99| 女同久久精品国产99国产精品| 99热这里只有精品6免费| 亚洲成av人片在线观看| 欧美线人一区二区三区 | 亚洲日韩中文字幕手机在线| 成人欧美日韩一区二区三区| 国产高清在线精品一区| 99爱在线精品视频免费观看| 亚洲成在人线aⅴ免费毛片| 国产精品天干天干在线观蜜臀| 福利姬在线喷水一区二区| 欧美中文字幕日韩中文字幕| 国产精品对白交换绿帽视频| 亚洲成人一区二区三区四区 | caoporon草棚在线视频147| 亚洲精品美女在线观看播放 | 午夜亚洲国产理论片亚洲2020| 成人做爰www看视频软件| 久久精品男人影院| 日本高清无卡码一区二区久久| av网站在线免费看| 一区二区在线免费| 久久精品一区二区中文字幕日本 | 精品一区二区成人免费视频| 久久久久久人妻一区二区| 乱丶伦丶图丶区一区二区| 亚洲欧美中文高清在线专区| 国产aⅴ无码久久丝袜美腿西西 | 国产精品久久久久香蕉| 亚洲七七久久综合影| 色综合中文综合网| 国产乱老一区视频| 8毛片A级18女人水真多| 国产乱子伦视频三区| 国产精品亚洲精品日韩已满| 日韩欧美精品中文字幕久久| 久久大香伊蕉在人线观看热| 午夜毛片一区二区三区毛片| 真实亲子乱一区二区| 国产美女被遭强高潮无套| 亚洲自拍偷拍视频网站| 亚洲国产精品免一区二区三区| AV日韩综合一区亚洲| 国产国产精品人在线视| 97视频国产中文字幕| 欧美亚洲黄片大全| 亚洲精品一区二区三区新线路| 日韩精品一区二区三区毛片| 欧美,日韩,精品一区二区偷拍| 国产精品九九九久久九九| 人妻精品久久久无码区色视| 亚洲精品久久久久国产| 青青青伊人色综合久久| 日韩高清每日更新在线 | ZOZ○Zo女人和另类Zoz0| 亚洲精品自拍小视频在线| 亚洲高清aⅴ日本欧美视频| 国产精久久久久无码AV| 久久精品国产亚洲av蜜色| 国产午夜精品自在自线之la| 国产欧美久久一区二区| 国产成人久久久精品一区二区三区| 人与动人物XXXXAV片下载| 国产美女精品久久久| 国产精品综合区在线观看| 亚洲旡码AV中文字幕| 国产精品推荐制服丝袜| 日本日本乱码伦视频免费| 国产精品无码AV77777| 国产成人AV无码片在线观看| 国语自产精品视频在线九九| 在线无码午夜福利高潮视频| 国产99九九久久无码熟妇| 欧美日韩国产大陆一区二区| 免费国产欧美国日产a| 亚洲国产午夜精品理论片在线播放 | 久久精品国产成人综合婷婷免费| 亚洲日韩图片专区小说专区| 91精品中文字幕一区二区三区| 美女张开腿让男人桶精品久久久 | 无码午夜人妻一区二区三区不卡视频| 国产一级特黄aa大片视频| 亚洲欧美精品一区国产| 新版天堂资源在线| 亚洲重口啪啪一区| 国产精品推荐制服丝袜| 久久国产福利一区二区三区| 国产精品96久久久久久| 日韩国内欧美精品| 日韩人妻精品无码一区二区三区| 欧美视频成人在线| 久久中文字幕综合婷婷| 在线观看人成视频免费| 亚洲日韩欧美婷婷综合久久| 亚洲国产成人无码网站大全| 97久久综合综合色hd亚洲国产成人久久综合一区 | 国产亚洲精品无码专区精品| 中文字幕欧美三区在线观看 | 人妻精品久久久无码区色视| 国产成人综合怡春院精品| 暴虐SM灌浣肠调教A片男男 | 最新精品国偷自产在线老年人| 欧美激情精品久久久久久| 外国人做爰又粗又大im| 免费无遮挡无码永久视频| 免费的黄色一级视频| 在线人成免费视频69国产| japanese色国产在线看免费| 国内精品乱码卡一卡2卡三卡| 久久―日本道色综合久久| 一区二区三区无码精油的作用| 久久久精品国产一区二区| 中文字幕aⅴ人妻一区二区蜜桃| 国产日韩欧美视频网址| 亚洲国产成人无码影片| 亚洲国产精品无码动态图| 人妻少妇精品无码专区二区| 久久亚洲少妇无码| 揄拍成人国产精品视频| 韩国精品一区二区三区无码视频| 国外AV无码精品国产精品| 免费久久人人爽人人爽AV| 久久久精品国产免大香伊| 真人无码免费视频网页| 最近2019年日本中文免费字幕| 国产成人一区=区| 欧美日韩免费在线一区二区三区| 国产日韩欧美视频网址| www.一级毛片在线播放| 欧美激情精品久久久久久| 久久久久国产精品片区无码| 果冻传媒国产区二期| 久久99久久99小草精品免视看| 91精品国产白丝无码网站| 国产成人无码免费视频79| 亚州一区二区三区久久AA| 亚洲欧美18岁网站| 亚洲一级aⅴ无码毛片理| 久久国产成人免费网站777| 一级无码性爱视频| 欧美午夜特黄AAAAAA片| 无码国产69精品久久久孕妇 | 精品久久久久久亚洲国产300| 日本网站一区二区三区四区 | 国产成人精品高清国产三级| 精品人妻中文无码AV在线| 午夜精品一区二区三区在线观看| YY111111少妇无码理论片| 免费永久在线观看黄网站 | 亚洲成AV人影片在线观看| 丰满少妇大力进入av亚洲| 国精品人妻无码一区二区三区喝尿 | 亚洲精品a久久久久久七| a级毛片18岁一上在线观看| 国产一区二区三区麻豆| 韩国AV片免费观在线看| 日本高清免费不卡一区二区| 国产精品免费99久久| 人妻丰满熟妇无码区| 女人一级特黄大片| 欧洲人妻无码视频在线| 天天摸夜夜添久久精品麻豆| 天天爱天天做男人的天堂| 亚欧洲精品在线视频免费观看 | 激情综合五月婷婷丁香| 精品一区二区三区国产馆| 99久久免费精品丝袜视频| 国产主播一区二区三区美女| 日韩一区二区三区在线播放| 亚洲在线无码免费观看| 亚洲日本欧美三级| 日韩精品一区二区三区毛片 | 精品无码久久久久国产手机版| 亚洲国产综合精品| 亚洲熟妇丰满XXXXX| 国产亚洲精品性爱视频| 无码粉嫩虎白一线天在线观看| 国产人妻精品av一区| 精品久久一区二区三区| 亚洲国产一区二区a三级片| 久久亚洲中文字幕精品一区| 黄页毛片网站大全在线免费观看 | 奇米精品视频一区二区三区| 国产成人无码精品午夜福利a| 不卡中文字幕中文无码| 被黑人巨鞭大战中国人妻视频| 中文字字幕国产精品| 美女张开腿让男人桶精品久久久| 一区二区三区国产在线播放| 狠狠色欧美亚洲狠狠色WWW| 亚洲国产成人无码网站大全| 国产精品久久久久无码人妻| 日韩一级欧美一级操逼| 国产精品特级毛片一区二区三区| 久久精品国产清自在天天线| 真实亲子乱一区二区| 国产最新黄色视频在线播放| 国产精品免费视频一区 | 毛片久久网站五月丁香| 久99久热爱视频精品免费| 特级毛片久久久久久久免费| 嗯,啊啊免费视频| 成人av福利在线| 午夜毛片一区二区三区毛片| 人妻的ⅤA无码视频| 9978九九热国产精品| 亚洲欧美aⅴ精品一区二区| 亚洲一区av无码少妇电影| 又大又黄在线播放| 一区二区三区无码精油的作用| 成人一区二区三区四区五区在线| 国产一区二区三区在线看| 欧美性一区二区三区| 欧美午夜特黄AAAAAA片| 久久精品国产成人一区二区三区| 婷婷久久香蕉五月综合| 亚洲日韩欧美内射姐弟| 精品日韩中文字幕av| 国产免费mv大片人人电影播放器| 久久久久99国产精品片| 亚洲日本中文字幕乱码在线| 97SE亚洲综合自在线| 八区精品色欲人妻综合网| 亚洲高清一区二区欧美| 亚洲成AV人片久久| 不卡一区二区三区高清在线| 久久久国产精品无码三级| 四虎永久在线精品国产免费| 国产激情久久久久老熟女影院| 欧美精品久久天天躁免费观看| 免费人成电影免费网站| 亚洲视频在线播放一区二区| 国产亚洲女人久久久毛片| 中文字幕一区二区三区地区 | 久久精品无码一区二区三无码区| 欧美性猛交xxxx乱大交丰满| 国产精品露脸国语对白| 国产精品久久毛片A片| 久久久不卡国产精品一区二区互動交流| 国精产品一区一区二区三区视频| 欧美有码在线观看| 精品久久久久久久免费影院| 亚洲不乱码卡一卡二卡4卡5卡| 欧美 日韩 亚洲一区二区三区| 日韩精品极品视频在线观看免费| 在线高清国产天堂| 国产人成无码不卡视频| 强奷漂亮的夫上司犯在线观看| 亚洲精品美女在线观看播放| 6080YYY午夜理论片中无码| 国产乱老一区视频| 国产日韩欧美黄片一区二区| 色狠狠色综合久久久绯色AⅤ影视| 人妻高清视频一区二区三区| 久久91麻豆精品成人福利网站| 伊人久久大香线蕉无码不卡| 亚洲性线免费观看视频成熟| 久久亚洲中文字幕精品一区| 每日更新国产精品视频网站| 少妇av一区二区三区无码廣大網友最新 | 一级看黄免费网站| 国产黄片免费大全| 亚洲欧美国产日韩综合| 影视自拍高清少妇| 国产日韩av一区二区在线| 中文一区二区三区不卡视频| 欧美又大又硬又粗BBBBB| 无码国产69精品久久久孕妇| 久久亚洲AV成人无码| 无码成人精品久久久| 无码国产福利片免费看| 中文天堂网www新版资源在线| 日本高清一本二本三本如色坊| 在教室伦流澡到高潮HBL原神 | 真实国产乱人伦在线视频播放| 国产亚洲另类无码专区国语| 2020精品国产自在现线官网| 午夜免费看片网站| 精品成人国产自在现拍| 免费专区一一色哟哟| 四虎成人永久在线精品免费播放| 四虎永久在线精品免费a| 国产成人一区二区三区免费3p| 四虎国产精品成人免费久久| 丁香五月天之婷婷影院| 精品久久久久久中文字幕人妻最新| 2018久久精品免费视频| 熟女高潮一区二区三区69av| 欧美一区二区成人免费| 亚洲欧美综合图一图二| 国产乱子经典视频在线观看| 日韩精品久久久久久蜜桃| 午夜福利精品久久久久久| 日韩精品真人毛片| JZZIJZZIJ在线观看亚洲熟妇| 久青草影院在线观看国产| 色综亚洲日本w在线| 久久露脸国语精品国产91| 久亚洲AⅤ无码精品夜夜嗨| a国产一区二区免费入口| 久久97中文字幕一区二区| 精品久久久久久久久午夜福利| 日韩欧美在线观看网址导航| 国产伦久视频免费观看视频| 久久国产亚洲av无码四区| 少妇被粗大的猛进69视频| 国产激情久久久久老熟女影院| 天天噜狠狠噜日日噜A片泽泽 | 国产精品第17页| 中文字幕一区二区三区蜜月| 久久精品伊人一区二区三区| 精品欧美日韩国产一区二区三区高清 | 久久精品亚洲乱码中文字幕最 | 久久久中日AB精品综合| 尺度av无码专区| 午夜理论片福利在线观看| 精品久久香蕉国产线看观看亚洲 | 亚洲a∨永久综合在线观看尤物| 国产精品第不卡国产视频第一页 | 久久东京热这里只有精品视频 | 亚洲人成伊人成综合网久久久| 国产h片在线免费观看视频| 国产a黄色三级三级三级| 成人天堂资源www在线| 中文字幕熟妇人妻在线视频| 乱码精品一区二区三区在线观看| 中文字幕无码人妻AAA片| 97久久超碰国产精品不卡| 日本精品中文一区二区三区| 亚洲日韩国产精品第一页一区| 香蕉在线精品视频在线| 三级黄色毛片视频看看| 国产一在线精品一区在线观看| 色呦呦一区二区三区| 神马午夜伦理福利视频| 亚洲欧美人高清精品a∨| 欧美三级在线播放| 尹人香蕉久久99天天拍| av一区二区三区高清| 欧美人妻精品一区二区在线| 全免费又大粗又黄又爽少妇片| 69精品久久久久| 好久被狂躁A片视频无码免费视频| 色综合天天综合狠狠爱_| AV午夜久久蜜桃传媒软件| 男女性杂交内射女bbwxz| 被灌满精子的波多野结衣| 久久久久国产精品片区无码| 日本免费一区二区三区高清视频 | 亚洲人成电影网站| 色综合视频一区二区三区44| 丁香五月天之婷婷影院| 99高清国产自产拍| 亚洲国产欧美另类日韩丝袜| 亚洲综合久久一本久道| 日韩精品片第7页免费观看网站 | 人妻无码AⅤ中文字幕日韩| 亚洲一卡2卡3卡四卡老狼| 国产特级毛片精品视频| 天堂网www在线资源最新版| 成人国产精品免费观看视频| 日韩人妻少妇精品视频在线| 狠狠色欧美亚洲狠狠色WWW| 91成人在线观看免费| AV狼友无码国产在线观看| 久久老子无码午夜精品秋霞| 一本大道无码日韩精品影视丶| 四虎国产精品永久在线网址| 日本一区视频在线观看| 欧美一级婬片AAAAAAA另类| 亚洲精品国产成人一区二区| 91青青青国产在观免费影视| 中文无码成人免费视频在线观看| _国产一区日韩二区欧美三区| 亚洲国产成人无码影片| 亚洲第一区无码专区| 精品综合久久久久久98| 国内精品自线一区二区2021| 日韩av中文字幕亚洲精品| 精品韩国亚洲AV无码一区二区三 | 国产00高中生在线网站| 四虎成人永久在线精品免费播放| 在线视频免费观看国产爱看片| 亚洲色大成网站WWW永久男同| 99久久免费毛片| 国产偷V国产偷∨精品视频}| 成人久久伊人咪咪| 浪潮a∨无码在线| 无码一区二区三区裸体视频| 99久久精品国产综合| 一区二区三区无码毛片真人| 日韩欧美每日更新| 亚洲电影在线观看| 欧美视频不卡一区二区三区| 精品国产乱码一区二区三区麻豆| 亚洲熟妇无码AV在线播放| 欧美精品黑人性xxxx| 国产精品99玖玖玖爱在线观看 | 国产永久免费观看黄网站| 人妻无码久久精品中文字幕| 黑人与人妻无码中字视频| 无码任你躁x7x7x7x7在线观看| 国产一级无码片在线观看| 国产亚洲精品bt天堂精选| 老妇女精品人妻一区二区av| jizz国产免费观看| 狠狠色综合久久丁香婷婷| 一级做性色a爱片久久片| 亚洲V无码一区二区三区四区观看| 国产一二三区日本精品欧美| 国产精品毛片a∨一区二区三区 | 欧美成人a级视频免费| 精品一区二区三区国产在线| 精品国产综合成人亚洲区2022| 成人国产精品视频一区二区| 刺激VIDEOSCHINA偷拍| 又黄又爽的视频在线观看网站| 国产精品果贷在线观看| 东京热无码国产精品| 亚洲欧美日韩亚洲中文色| 日韩天堂在线旡码| 国产成人无码一二三区视频| 蜜芽尤物原创AV在线播放| 亚洲中文欧美日韩不卡| 成人国产亚洲欧美成人综合网| 欧美又粗又硬又爽直播大片| 国产成人久久精品流白浆| 人体内射精一区二区三区| 欧美肥胖老太videos另类| 午夜免费福利电影院| 国产激情久久久久老熟女影院| 中文字幕无码不卡一区二区三区| 国产精品成久久久久三级无码| 精品日韩中文字幕av| 好男人看在线视频| 香蕉视频在线精品视频| 久久99精品成人网站| 97精品人妻一区二区三区在线| 成人美女视频一区二区三区| 日本高清不码一区二区三区| 亚洲国产成人无码电影| 国产高跟鞋丝袜在线播放| 精品成人免费一区二区| 中文字幕人成无码人妻综合社区| 国产成人高清亚洲一区| 国产一区日韩二区欧美三区| 国产成人A精品国产欧美精品V| 日产国产精品亚洲系列| 日欧137片内射在线视频播放| 欧美一区二区三区成人片在线| 亚洲国产福利一区二区三区| 无码之国产精品网址蜜芽| 国产一二三区韩国女主播| 日韩一级毛一欧美级a免费| 69精品久久久久| 久久精品久久国产| 国产成人av一区二区三区毛片 | 国产伦久视频免费观看视频 | 成人久久伊人咪咪| 婷婷综合久久中文字幕蜜桃三电影 | 日韩在线观看一区二区三区四区 | 日本欧美一区二区三区四区| 成人国产对白普通话在线播放| 99久久精品全部| 色欲综合视频天天天 | 久久99精品久久久久久久不卡 | 一区二区三区鲁丝不卡麻豆| 日韩 国产精品 一区二区| 国产日韩亚洲欧洲一区二区三区 | 国产亚洲精品精品国产亚洲综合| 亚洲欧美日韩在线网| 97人人超碰国产精品| 国产福利酱国产一区二区| 17c国产精品88888| 日韩精品视频一区在线| 国产无遮挡18禁无码免费| 国产91l在线播放| 日韩无码一区中文| 亚洲精品无码永久在线观看你懂的| 欧美欧美国产福利片| 国产精品成人一区二区三区视频| 亚洲免费电影一区二区三区| 久久精品国产电影一区| 精品国产一区二区三区mp4 | 国产va免费不卡看片| 国产精品女久久久一区二区| 国产卡1卡2卡3仙踪林老狼| 国产精口品美女乱子伦高潮| 欧美疯狂性受XXXXX喷水| 久久国产成人免费网站777| 99无码人妻一区二区三区免费| 午夜视频在线瓜伦| 免费99精品国产自在在线| 中文字幕无线乱码人妻| 国产视频一区二区在线播放| 午夜毛片一区二区三区毛片| 在线播放亚洲国产一区二区三| 人妻AV无码AV中文AV日韩AV| 国产欧美精品另类又又久久| 红杏国产成人精品视频| 美女任你摸毛片av免费 | 办公室艳妇潮喷视频| 亚洲熟妇丰满XXXXX| 亚洲成A人片在线不卡一二三区 | 无码ⅴ久久亚洲熟妇无码| 国产精品_国产精品_K频道| 2020欧美日韩国产系列| 在线国产小时av| 日韩精品第一区二区三区,| 国产精品成人网在线观看| 成人欧美一区二区三区| 在人线AV无码免费高潮喷水| CHINESE性内射高清5| 国产伦理精品一区二区三区四区| 亚洲午夜性猛春交xxxx| 午夜放荡视频人与禽| 亚洲精品一区二区三在线观看 | 久久99亚洲精品久久频| 亚洲?v无码专区亚洲?v桃花桃| 89碰碰碰人妻无码免费看| 亚洲欧美日韩一级在线| 欧洲精品久久久av无码电影| 色噜噜狠狠综曰曰曰| 亚洲综合国产资源在线观看| 又大又黄在线播放| 日本一区二区三区在线免费影音| 国产黄色在线观看| 久久久AV波多野一区二区| 精品人妻无码中字系列| 欧美日韩国产人妖色视频| 91高清免费国产自产拍| 亚洲影视欧美国产| 在线无码va中文字幕无码| 久久久9999久久精品| 一级a大片在线观看| 久久青青草原精品国产| 久久久91精品国产一区二区| 久久久久免费看黄a级试看| 最新国产精品拍自在线观看| 欧美一性一乱一交一视频| 久99久热爱视频精品免费| 麻豆MD0077饥渴少妇| 在线亚洲AV成人无码中文| 欧美日韩视频一区三区二区在线观看| 亚洲精品成人无码中文毛片不卡| 亚洲一卡2卡3卡四卡老狼| av一区二区三区高清| 亚洲视频在线播放一区二区| av.三级黄色毛片在线观看| 另类亚洲色大成网站| 久久国产综合精品| 在线精品亚洲观看不卡欧| 野花社区www在线视频最新资源| 日韩精品一区二区三区不卡| 中文字幕丰满乱码| 国产精品18欠久久久久久| 欧美综合自拍亚洲综合区| 99亚洲日韩国产精品无玛| 成人黄无码视频在线播放| 国产无遮挡18禁无码免费| 2018久久精品免费视频| 网站资源多国产av| 国产AV国片精品| 国产亚洲精品bt天堂精选| 中文字幕久久国产精品综合| 国产精品拍在线天天更新| 在线高清国产天堂| 亚洲AAAAA特级| 色欲综合视频天天天| 中文字幕人妻熟女AV| 尹人香蕉久久99天天拍| 日韩在线精品一区| 日韩精品一区二区三区不卡| 一级特黄大片欧美久久久| 国产精品_国产精品_K频道| 久久人人爽人人爽a大片| 综合欧美精品国产| 91精品国产91久久青草| 国产精品一区二区AV不卡| 97se狠狠狠狼鲁亚洲综合网| 国产熟睡又污又黄又无遮挡的网站| 久久人人爽人人爽人人片ⅴ| 神马免费午夜福利剧场 | 日本无码成人片在线观看波多 | 国产草莓视频无码A在线观看 | 久久一区二区三区免费网站| 无码视频一二三四区| 国产一卡2卡3卡4卡精品| 国产欧美在线亚洲一区| 国产性色av免费观看在线| 国产亚洲日本精品成人专区| 国产美女黄色视频免费看| 美女视频一区二区三区三州| 无码精品黑人一区二区三区| 97婷婷狠狠成为人免费视频| 亚洲av无码一区二区高潮喷水| 成人免费观看黄a大片夜月国产| 国产精品成人免费视频一区丝袜| 国产精品18久久久久久vr| 色综合视频一区二区三区44 | 天天爱天天做天天爽| 中文字幕熟妇人妻在线视频| 国产欧美二区综合| 亚洲中文字幕综合网址| 亚洲欧美日韩在线综合网| 最好看的中文字幕2019| 野花视频在线观看免费播放高清版 | 中文国产成人精品久久app| 久久精品中文一区二区日韩av| 亚洲欧美日韩国产三区| 久久国产亚洲欧美久久| 伊人久久大香线蕉AV最新午夜| 中文字幕一区二区三区蜜月| 在线视频免费观看国产爱看片| 91精品在线费观看| 热99re久久精品国产99热| 日韩国产欧美一区二区三区四区 | 无码主播精品一区二区三区| 国产yin乱大巴视频| 日韩AV无码久久永久10| 日韩亚洲人成影院| 3d动漫精品啪啪一区二区下载| 欧美亚洲中文字幕高清| 最新亚洲国产综合V| 久久亚洲制服丝袜综合网站| 国自产拍视频在线无码| 国产成人无码Av在线播放无广告| 免费人成毛片动漫在线播放| 国产精品福利自产拍久久| 国产精品久久久久久免费| 毛片久久网站五月丁香| 国产疯狂女同互磨高潮在线看 | 亚洲国产成人小说高清影视| av潮喷大喷水系列无免费| 国产精品亚洲w码日韩中文| 满宫春1一40集免费观看| 精品国产Ⅴ无码大片在线观看| 不卡av手机在线免费观看| 亚洲欧洲日韩国产一区二区三区 | 久久精品女人天堂A片生理期| 免费视频爱爱太爽了无码| 亚洲成人精品免费久久久久| 欧美精品九九久久久久久| 亚洲精品久久久9婷婷中文字幕| 久久精品无码人妻少妇| 日韩中文字幕成人av网站| 亚洲av专区一区二区| 国产午夜精品一区二区三区极品 | 国产AV旡码专区亚洲AV| 91综合久久一区| 国产欧美精品久久久久久TⅤ | 国产乱子伦视频三区| 噜噜噜亚洲色成人网站| 婷婷六月激情综合一区| 国产大全久久激情综合电影 | 亚洲综合图片区自拍区| 精品一区中文字幕一区二区三区| 国产在线播放日本| 国产欧美日韩第一页| 亚洲AV无码成人品爱| 国产成人片AⅤ在线观看| 日韩精品无码久久久观看| 97视频国产中文字幕| 日韩V亚洲V欧美V精品综合| 久久精品日日躁夜夜躁| 在线观看国产一区亚洲,日本1| 亚洲一区二区中文| 国产又黄又免费aaaa视频| 国产亚洲A∨片在线观看| 免费国产黄网站在线观看| 92午夜福利在线播放| 精品国产乱码久久久久久郑州公司 | 午夜免费福利电影院| 国产一二三四2024大象| 欧美日韩不卡一卡2卡三卡4卡5卡| 日韩视频在线第一页免费| 国产XXXX视频在线观看免费| 亚洲国产综合av剧情| 国产欧美日韩免费| 久久99热不卡精品免费观看| 成人国产精品视频一区二区 | 色综亚洲日本w在线| 精品国产中文字幕乱码免费 | 久久精品一区二区中文字幕| 亚洲精品无码中文字| 国产精品拍在线天天更新| 亚洲一区国产二区日本三区| 高清无码国产免费片| 亚洲国产欧美一区二区图片| 久久婷婷丁香七月色综合| 久久久久Av免费无码久久| 在线日本观看视频一区二区| 国产制服丝袜免费网址| 亚洲第一区欧美国产综合86| 一区二区三区免费不卡视频 | 欧美日韩国产人妖色视频| 国产伦精品一区二区三区高清版禁| 欧美日韩一区二区精彩视视频| 久久国产精品亚洲va麻豆| 99久久免费毛片 | 2024中文字幕一区二区三区| 99精品视频在线观看15| 国产成人无码AⅤ片在线观看| 国产高潮流白浆网站| 玩弄大乳奶水中文字幕电影| 日本在线看片免费大黄| 国产成人黄色视频在线免费观看| 国产精品性色av一区二区三区| 精品国产伦一区二区三区ax| 久久精品国产四虎| 免费精品国自产拍在线不卡| 欧美精品一区视频| 国产va在线观看免费看| 亚洲国产超清无码专区| 国产精品嫩草影院永久视频| 网站资源多国产av| 欧美亚洲国产一区二区三区| 人妻中文乱码在线网站| 精品一区二区三区免费毛片爱| 成人欧美日韩一区二区三区| 中国美女一级毛片免费播放 | 欧美熟妇人妻一区二区三区| 99精品久久99久久久久胖女人| 亚洲欧美日韩国产综合精品久久| 日韩精品一区二区免费出品 | 久久久免費視頻播放| 国语对白国产精品一区| 国产精品99女人久久久久久| 亚洲综合日韩精品欧美综合区| 99亚洲日韩国产精品无玛| 久久精品女人天堂AV免费观看| 久久久久免费看黄a级试看| 久久国产亚洲精品超碰热| 无码成a人片在线观看| 丁香五月亚洲综合深深爱| 人妻的ⅤA无码视频| 欧美日韩国产大陆一区二区| 亚洲国产精品久久久一区二区| 亚洲精品久久久久久动漫| 人妻无码中文专区久| 国产精品毛片一区久久久| 麻豆A片爽爽歪歪爽爽视频看看| 亚洲精品乱码久久久久99| 影音先锋色AV男人资源网| 亚欧洲精品在线视频免费观看| GOGOGO免费高清在线| 欧美日韩精品久久| 91极品尤物在线观看播放| AV在线一区二区精品| 好大好湿好硬顶到了好爽视频| 久久国产精品亚洲va麻豆| 欧美韩黄片手机在线视频| 旧里番亚洲国产一区| 亚洲最新无码成AV人| 久久久国产一区二区三区四区小说| 中文乱码字幕国产中文乱码| 日本护士被强行XXXX中文字幕| 无套带白浆嗯呢啊污| 一个人免费观看在线高清国产婷婷综合| 日本高清一区二区三| 欧美一区在线黑人大吊| 福利姬在线喷水一区二区| 免费中文无码AV动作片| 日本免费播放视频乱码伦| 国产免费不卡视频在线高清 | 亚州性无码不卡免费视频| 天天AV天天翘天天综合网| 久久精品国产99国产精品亚洲 | 国产精品无码a∨麻豆| 东京热无码国产精品| 国产精品久久久久久妇女| 国产高潮流白浆免费观看| 国产精品国产自线拍免费不卡| 惠民福利亚洲欧美国产日韩在线观看 | 久久―日本道色综合久久| 精品久久久无码中文字幕边打电话| 日韓手機在線免費視頻| 日本精品一区二区不卡免费| av网址在线免费观看得很| 中文字幕av中文字无码亚| 国产精品天干天干在线观蜜臀 | 国产在线不卡一区免费视频 | 亚洲午夜福利1区2区| 婷婷综合久久中文字幕| 啊好痛把我的批日出水了| 亚洲日本欧美三级| 欧美视频一区在线观看| 亚洲AV毛片成人精品网站| 人人澡人人妻人人爽人人蜜桃| 国产欧美日韩一区二区国产精品专区 | 午夜免费福利电影院| 日本美熟妇在线视频三区| 一本到高清无码中文| 521人成a天堂v| 国产人成91精品免费观看| 97视频国产中文字幕| 亚洲一区二区中文| 久久国产乱子精品免费女| 国产精品久久毛片av大全| 香港台湾免费经典AV毛片| jizz中国免费在线播放麻豆视频| 国产国产午夜福利视频在线观看| 国产做a爱视频在线观看| 91探花国产综合在线精品在线观看| 精品氩 99久久久久久黄无码| 日本高清无码视频| 国产成人一区二区三区日韩精品人 | 国产精品成人99久久久| 日韩精品极品视频在线观看免费 | 精品一区二区成人免费视频| 亚洲日本一区二区一本一道| 亚洲自拍偷拍视频网站| 亚洲视频 中文字幕 欧美在线| 亚洲日韩在线视频| 日韩一区二区三区免费在线播放| 精品久久一区二区乱码 | 天天日天天日天天射天天射| 国产乱子伦农村叉叉叉| 国产V亚洲V天堂A无码99| 成人做爰黄AA片免费看松下纱荣| 欧美精品久久国产欧美日韩| 中文一区二区三区不卡视频| 欧美日韩人妻精品一二三区免费| 久久久久国色AV免费观看性色| 国产精品久久久久久妇女| 熟女丰满老熟女熟妇| 亚洲国际精品久久久久久| 牛牛视频精品一区二区不卡| 欧美一区二区三区中文字幕| 欧美日韩另类国产一区二区三区| 精品高潮呻吟99AV无码| 一区二区免费高清观看国产丝瓜| 少妇一级片无码免费高清| 亚洲爆乳少妇无码激情| 久久久久国产精品熟女影院| 国产成人精品2021| 无人视频在线观看播放免费| 欧美一区二区激情啪啪| 免费不卡国产精品午夜福利在线 | 欧美精品黑人粗大视频| 欧美日韩视频一区三区二区在线观看| 国产欧美亚洲不卡中文| 日韓手機在線免費視頻| 亚洲日韩精品无码一区二区三区| 国产草莓视频无码A在线观看| 久久精品无码日韩一区二区aⅴ| 日本网站一区二区三区四区| 久久亚洲中文字幕精品一区四| 国产精品制服丝袜二区| 日本高清不码一区二区三区| 乱伦中文无码免费| 99久久免费精品丝袜视频| 一级做a爰片久久毛片了d| 乱丶伦丶图丶区一区二区| 久久97中文字幕一区二区| 国产无人区码SUV| 日韩精品欧美成人国产不卡| 国产精品免费成人av| 最新免费中文字幕一区二区视频| 亚洲日本在线电影| 伊人成年网站综合网| 狠狠色噜噜狼狼狼色综合久| 黄片视频在线播放一区二区| 国产日韩亚洲欧美看国产视频| 亚洲成av人片在线观看| 日韩办公室激情丝袜无码视频| 午夜剧场刺激性爽免费视频 | 一本大道在线无码一区| 亚洲2020一区二区三区四区| 亚洲精品国产av成人| 狠狠综合久久久久尤物| 亚洲成高清日本亚洲成高清| 天天爱天天做男人的天堂| 最新日韩毛片一区二区三区| 最好看免费观看高清视频动漫| 久久丁香五月天综合网| 日本免费一区二区三区| 国产精品久久久久久妇女| 亚洲2021欧美日韩在线精品| 韩日综合成人中文字幕| 国产午夜影视大全免费观看| 国产精品第不卡国产视频第一页| 日本在线看片免费大黄| 好爽…又高潮了免费毛片| 国产第一页久久亚洲| 91免费无码视频| 亚洲国产精品va在线观看麻豆| 久久无码国产日本欧美| 浪潮a∨无码在线| 亚洲一级aⅴ无码毛片理| 久久久久久久久毛片精品伦理片 | 国产精品自拍一二三四| 精品国产乱子伦一区| 中文天堂在线资源www| 国产精品久久人妻拍拍水牛影视| 日韩精品中文字幕视频播放| 最近更新2019中文字幕高清| 真人无码免费视频网页| 国产性色av免费观看在线| 国产成人精品自在钱啪| 日韩V亚洲V欧美V精品综合| AV狼友无码国产在线观看| 高清乱伦自拍亚洲| 欧美日韩国产综合精品一区| 免费高清a级毛片在线播放| 国产欧美精品另类又又久久| 亚洲天堂视频在线观看免费| 97精品国产97久久久久久| 亚洲av无码乱码国产精品| 清纯唯美亚洲综合网| 欧美日韩中文字幕综合| 成人黄无码视频在线播放| 久久精品人人人人人人| 日本黄网站三级三级三级| 男女高潮又爽又黄又无遮挡| 国产精品99女人久久久久久| 亚洲成片在线观看京东热| 一区二区自拍偷拍| 久久久久国产精品7777| 国产黄色视频在线观看www.| 成人国产精品视频一区二区| 欧美国产日韩一区二区三区四区| 国产aⅴ精品一区二区久久| 在线看的免费网站黄2018| 亚洲国产aⅴ精品一区二区三区| 噼里啪啦国语在线观看高清资源| 91亚洲精品国产第一| 丰满大屁股熟女啪播放| 国产成人A精品国产欧美精品V| 国产乱码日韩一区二区三区 | www.国产不卡在线一区二区| 在线观看成人免费视频不卡 | 久久精品无码日韩一区二区aⅴ| 中文国产成人精品久久不| 亚洲中文字幕不卡一区二区三区| 天天AV天天翘天天综合网| 中文字幕综合av一区二区三区| 日韩精品一区二区三区毛片| 日本高清在线观看WWW色| 无码粉嫩虎白一线天在线观看| 韩国青草无码自慰直播专区| 欧美激情综合亚洲一二区| 国产高潮流白浆网站| 亚洲爆乳少妇无码激情| 国产精品爆乳奶水无码视频| 国产一区二区三区欧美一区| 国产人A片777777久久| 9i看片成人免费视频| 无码av免费一区二区三区四区| 国产精品日本一区二区三区在线 | 亚洲av综合久久无| 51精品视频在线一区二区| 亚洲午夜国产精品三级片| 中文毛片无遮挡高潮免费| 中日韩一区二区在线观看| 国产l精品国产亚洲区| 国产成a人在线观看网| 中文字幕一区在线观看视频| 亚洲电影在线观看| 人与动人物XXXXAV片下载| 国产精品人妻无码久久久久| 亚洲欧美中文日韩v在线97 | 在线香蕉一区二区三区| 亚洲精品偷拍无码不卡AV| 久久人人爽人人人人片av| 揉捏奶头高潮呻吟视频| 国产午夜精品自在自线之la| 久久综合AV免费观看| 日韩精品一区二区三区毛片 | 色情久久久AV熟女人妻网站| 中国农村自拍HDXXXX| 久久影视这里只有精品国产| 国产精品人妻无码久久久郑州| 日本一二三区在线免费观看| 日本精品啪啪一区二区三区| 免费精品无码成人片在线观看 | 国产成人av在线影院| 97爱亚洲综合成人| 欧美一区在线黑人大吊| 黄色午夜欧美视频| dy888午夜国产精品| 亚洲欧洲人体超大胆露私| 亚洲综合在线影片| 国产午夜精品一区二区三区欧美| 亚洲无码成人在线| 国产亚洲精品AAAA片在线播放 | 人妻中文在线一区二区三区| 免费人成激情视频在线观看| 饥渴人妻欲求不满在线| 国产成人久精品一区二区三区| 亚洲人成人无码WWW影院| 国产精品无码一区二区三区高潮| 精品高清中文在线观看| 日韩V亚洲V欧美V精品综合| 最近最新在线观看免费高清完整版 | 国产精品高潮呻吟久久| 天堂在\/线中文官网| 国产精品亚洲精品日韩已满| 国产91精品黄片| 国产亚洲精品AA片在线观看| 人妻久久一区二区三区精| 9精品人妻一区二区三区蜜桃| 无码少妇一区二区三区芒果| 久久精品国产亚洲av不卡网站| av激情一区二区三区| 免费在线观看黄色AV| 亚洲处破女AV日韩精品波波网| 1769成人国产精品视频| 国产最爽乱淫视频国语对白 | 日韩欧美视频免费在线观看| 久久无码国产日本欧美| 精品无码美妇视频网站| 久久人人爽人人人人片av| 国产一区日韩二区欧美三区| 国产婷婷精品成人一区二区三区 | 精品一区二区三区免费毛片爱| 亚洲色大成网站WWW永久男同| 国产国拍精品成人乱理片| 国产成A人亚洲精V品无码性色| 色哟哟网站在线观看| 日韩亚国产欧美三级| 亚洲国产一区二区精品无码| 国产精品性感美女av| 亚洲国产午夜精品理论片在线播放| 国语自产精品视频在线看| 国产精品高潮呻吟av久久4虎| 亚洲精品毛片一级av网站软件| 天堂在\/线中文官网| 久久综合AV免费观看| 精品人妻无码一区二区三区四川人| 午夜放荡视频人与禽| 亚洲欧美日韩国产三区| 久久人妻无码毛片a片涩天使| 苍井空亚洲精品AA片在线播放| 免费国产成人福网站| 国产欧美精品久久久久久TⅤ| 日本视频一区二区三区四区| 国产精品第51页26uuu| 强开乳罩摸双乳吃奶羞羞www| 成人网站亚洲二区乱码| 人妻丰满熟妇岳av无码| 国产爆乳无码视频在线观看| 国产亚洲欧美一区二区精| 久久婷婷五月综合成人D啪| 国产成人片AⅤ在线观看| 日韩美女在线观看一区| 高清视频大片免费观看| 国产免费久久精品99久久| 国产精品自产拍在线| 久久久精品无码视频| 国产精品骚一区二区三区| 亚洲欧洲中文字幕日产无码| 久久久99精品免费观看| 久久99国产精品1区二区| 欧美经典少妇一区二区三区| 夜夜爽妓女8888888视频| 精品一区二区三区成人精品| 国产精品精品国产免费电影| 国产AV永久无码精品网站| 91精品在线欧美| 精品国产欧美日韩一区二区三区| 成人日本一区二区| 亚洲最大中文字幕无码网站| 欧美日韩国产成人aⅴ| AV成人无码无在线观看| 日韩三级一区二区三区高清| 国产做a爰片久久毛片a片蜜臀 | 国产一区二区三区在线观| 日韩一区久久久久久久| 红杏国产成人精品视频| 国产精品国内免费一区二区三区| 亚洲久综合在线导航| 在线播放亚洲国产一区二区三| 国产精品毛片A∨一区二区三区| 久久中文精品无码中文字幕| 国产不卡中文字幕在线电影| 麻豆A片爽爽歪歪爽爽视频看看 | 日韩人妻中出av一区二区三区 | 日韩系列视频在线观看有码| 精品国产三级AV一区二区 | 国产不卡中文字幕在线电影| 含羞草实验室隐藏路径2023| 免费无码在线播放av| 亚洲精品中文字幕乱码三区一二| 欧美日韩另类国产一区二区三区| 9999人体做爰大胆视频| 日本一区视频在线观看| 四虎一区二区成人免费影院网址| 国产内射爽爽大片| 蜜臀精品久久久久一区二区三区| 亚洲一区av无码少妇电影 | 久久久久久曰本av免费免费| 亚洲乱码精品久久久久..| 老熟女高潮一区二区三区1| 在线看的免费网站黄2018| 激情五月婷婷丁香久久| 免费视频专区一国产盗摄| 久久国产超碰女女AV| 在人线AV无码免费高潮喷水| 亚洲欧美综合精品二区| 国产午夜精品自在自线之la| 影视自拍高清少妇| 久久99亚洲精品久久频| 无码AV蜜臀AⅤ色欲在线观看 | 又黄又爽一区二区免费看| 亚洲午夜福利院在线观看| 麻豆A片爽爽歪歪爽爽视频看看| 欧美日韩三级国产在线| 揭秘知花凛AV在线播放| CHINESE性内射高清5| 亚洲日本va午夜中文字幕一区| 日本少妇黑毛BBW| 成人国产精品视频一区二区 | 日韩精品亚洲人旧成在线| 亚洲91无码精品一区在线播放| 亚洲精品久久无码日韩绯色| 国产免费观看久久黄av片| 亚洲国产理论片在线播放| 免费视频爱爱太爽了无码| 久久久久Av免费无码久久| 思思99热久久精品在线6| 国产亚洲精品久久精品6| 国产精品拍在线天天更新| 国产精品一区二区三区久久| 无码精品日韩专区| 国产免费播放在线观看| 91探花国产综合在线精品在线观看 | 欧美久久大香线蕉无码| 日韩囯产va精品一区二区久| 国产三级不卡在线观看视频| 国产成年无码久久久久下载| 漂亮少妇高潮A片XXXX| 人人澡人摸人人添学生av| 国产三级日产三级40岁| 亚洲一区国产二区日本三区 | 久久久久人妻一区精品555| 日韩亚洲欧美在线com| 男生下面伸进女人下面的视频| 成人做色视频在线观看网站| 亚洲V无码一区二区三区四区观看| 综合自拍日本国产| 亚洲成A人V在线蜜臀| 国产精品推荐制服丝袜| 久久亚洲春色中文字幕久久| 日韩资源福利网站免费观看一区| 国产在线97色永久免费视频| 中文字幕亚洲综合久久菠萝蜜| 欧美一级激情在线观看| 男生下面伸进女人下面的视频| 一级爽爽爽影院毛片体验区| 日韩欧美一区二区综合激情| 日韩精品一区二区免费出品| 韩国日本亚洲免费| 奇米精品视频一区二区三区 | 欧美成人亚洲日韩二区| 欧美日韩国产综合精品一区| 亚洲精品一区 精品二区| 色欲色香天天天综合网站免费| 日本少妇高潮喷水视频| 国产欧美日韩 一区二区三区| 蜜臀国产精品毛片久久久| 最新恐怖电影在线观看| 俺去俺来也www色官网| 免费无码AV片在线观看中文| 四虎8848精品成人免费网站 | 一区二区在线免费观看| 激情综合五月丁香五月激情| 精品久久久综合体桃花网| 浪荡女天天不停挨CAO日常视频| 国产成人乱色伦区| 国产精品特级毛片一区二区三区| 欧美一区在线黑人大吊| 色综合中文综合网| 国产成人一区二区三区四川人| 国产精品欧美日韩激情在线| 久久综合一区网址| 国产日韩一区二区视频在线播放| 91高清免费国产自产拍| 欧美日韩在线免费观看欧美日韩| 国产播放隔着超薄丝袜进入| 中文字幕不卡欧美日韩免费| 亚洲制服丝无码中文在线| 中文字幕人妻一区二区五月天色| 搡的我好爽视频在线观看免费| 成人h动漫精品一区二区| 中文字幕综合av一区二区三区| 欧洲av美女一区二区三区| 国产日韩欧美一区二区| 国产成人一区二区不卡免费视频| 自拍无码免费乱伦| 国产亚洲精品AA片在线播放天| chinese乱子伦videos| 国产美女精品久久久| 国产一二三四区乱码免费| 国产三级久久精品三级| 欧洲av无码放荡人妇网站| 亚洲AV成人专区电影| 久久精品女人天堂AV免费观看| 在线国产小时av| 亚洲免费电影一区二区三区| 欧美性生交xxxxx久久久缅北| 一个人的视频在线观看WWW免费无码 | 久久国产福利一区二区三区| 久久综合九色综合97婷婷女人| 欧美国产日韩一级片| 亚洲色最大色综合网站| 欧美精品欧美人与动人物牲| 久久精品综合热久久| 免费人成激情视频在线观看| 四虎永久在线精品884aa| 不卡无码在线观看视色| 欧美国产伦久久久久| 国产成人亚洲综合网色欲网| 亚洲欧美日韩丝袜一区二区| 国产日韩厂亚洲字幕中文| 亚洲国产制服欧美日韩中文| 欧美日韩中文字幕综合| 一级国产做a爱的视频| 亚洲av无码一区二区三区人妖| GOGOGO免费视频观看中文| 免费中文无码AV动作片| 河北真实伦对白精彩脏话| 精品少妇爆乳无码av专用区| 别揉我奶头~嗯~啊~一区二区三区| 国产午夜不卡影院| 亚洲婷婷五月色香综合缴情 | 天堂俺去俺来也www色官网| 99久久精品九九亚洲精品| 三级国产女主播在线观看| 狠狠躁夜夜躁无码中文字幕| GOGOGO免费高清在线| 无码日韩综合一区二区三区| 日本亚欧乱色视频在线系列| 亚欧日本污污一区在线观看| 2021久久国自产拍精品| 日韩中文人妻无码不卡| 中文字幕av一区,二区,三区| 久久国产精品高清77777| 日日摸日日碰夜夜爽亚洲| 日韩欧美伊人久久大香线蕉| 免费高清a级毛片在线播放| 亚洲综合在线影片| 国产欧美黄片欧美亚洲性爱| 精品久久香蕉国产线看观看亚洲 | 红杏国产成人精品视频| 欧美亚洲国产精品一区二区| 最近中文字幕mv在线资源| 色五月五月丁香综合久久| 国产精品久久久久无码人妻| 欧美激情内射喷水高潮| 国产黑色丝袜免费网站| 国产av永久无码青青草原| 中文字幕无码av波多野吉衣| 国产性色av免费观看在线| 丁香五月亚洲综合深深爱| 被灌满精子的波多野结衣| 久久综合电影一区| 日本无码电影一区二区在线观看| 久久精品国产电影一区| 欧美日韩一区二区三区内射| 欧美日韩亚洲一区二区内射| 国产日韩欧美视频网址| 国产美女又大又黄的视频| 中文字幕av一区,二区,三区| 国产精品videossex国产高清 | 日本不卡在线视频二区三区| 欧美日韩成人精品久久久免费看 | 无遮挡激情视频在线观看| 国产成人亚洲精品无码mp4| 久久精品无码日韩一区二区aⅴ| 黑人巨大精品欧美| 国内国外日产一区二区| 天天日天天日天天射天天射| 国产乱码一二三区精品| 日韩精品人成在线播放| 国产日韩一区二区视频在线播放| 亚洲午夜一级AV手机在线播放| 在线看片国产日韩欧美亚洲| 国产一区二区三区麻豆| 国产三级无码内射在线看| 国产男女视频在线免费观看| 日本欧美一区二区三区在线播放| 国产h动漫视频磁力链接| 美女视频免费永久观看的| 亚洲熟妇丰满XXXXX| 无码午夜人妻一区二区三区不卡视频| 亚洲欧美色中文字幕在线| 人人妻人人澡人人爽精品日本| 久久精品99久久香蕉国产色戒| 免费无码在线播放av| 国产特级毛片精品视频| 国产成人精品久久一区二区| 制服丝袜一区日韩| 中文字幕乱码人妻| 亚洲色图欧美另类国产精品| 毛片无遮挡高清免费久久| 99无码人妻一区二区三区免费 | 无码一区二区三区裸体视频| 亚洲午夜福利1区2区| 国产精品一区无码麻豆| 久久精品中文字幕一区| 一区二区三区欧美| 国产成人黄色视频在线免费观看| 91成人在线观看免费| 亚洲中文人妻字幕视频| caoporn国产精品免费视频| 四川少BBB搡BBB爽爽爽| 亚洲av日韩av制服丝袜第一页| 成人乱码一卡二卡3卡| 三级黄片无码视频| 国产精品一区二区在线观看| 亚洲欧美国产日韩一区二区三区 | 久久无码国产日本欧美| 精品久久久亚洲一区二区| 成人激情在线播放| 国产不卡一级内射视频在线观看| 18禁无码网站天天看| 欧洲精品VA无码一区二区三区| 国产00高中生在线网站| 91九色精品无码片一区二区三区| 亚洲无人区午夜福利码高清完整版| 国产大秀视频一区二区三区| 嗯啊灬别停啊灬用力灬快| 国产精品亚洲日韩欧美| 欧美一级咪咪在线免费播放| 亚洲中文欧美日韩不卡| 日产国产精品亚洲系列| 国产精品无码免费视频二| 久久久久久亚洲精品美女| 91精品在线欧美| 日本视频一区二区三区四区| 丁香社区伊人亚洲欧美| 免费无遮挡无码永久视频| 成人综合激情在线| 欧亚一区二区三区av| 国产第1页欧美61794| 国产噜噜亚洲牛牛AV一二三区| 国产精品丝袜诱惑| 高清一区二区三区视频不卡| 人妻精品久久久久中文字幕19 | 国产综合激情在线亚洲第一页| 国产乱子伦在线一区二区| 欧美精品久久久久久久久久| 亚洲va韩国va欧美va天堂| 欧美三级手机不卡在线观看| 老子影院午夜精品无码| 人妻系列影片无码专区50| 精品无码美妇视频网站| 人妻秘书AV一区二区| 搞AV一区二区水蜜桃| 中文字幕久怡春院| 欧美成人WWW免费全部网站| 亚洲日日精AV无码区A片| 中文无码妇乱子伦视频| 亚洲色一色噜一噜噜噜| 国产日韩亚洲欧洲一区二区三区| 久久久久香蕉视频| 自拍偷自拍亚洲精品10P| 欧美成人精品不卡视频在线观看| 亚洲欧美一区在线| 色一情一乱一交一二三区瑜伽| 精品无码成人久久久久久| 91久久精品无码人妻一区二区| 中文字幕一区二区三区地区 | 日本欧美视频在线观看| 亚洲精品乱码久久久久99| 伊人久久大香线蕉AV最新午夜| 久久精品无码人妻少妇| 国产不卡一级内射视频在线观看| 日韩精品在线观看一区二区三区| 国产激情无码一区二区| 香蕉视频在线精品视频| 爆乳视频一区二区三区四区| 国产精品拍在线天天更新| 色狠狠色综合久久久绯色图| 久久―日本道色综合久久| 欧美日韩国产一区二| 欧美精品一区二区精品| 女同久久精品国产99国产精品| 亚洲成人日本高清| 日韩欧美另类卡通在线视频| 国产人成无码不卡视频| 国产高清一区二区| 亚洲欧美中文高清在线专区| 97人人超碰国产精品| 国产精品第17页 | 欧美日韩一区二区在线成人| 亚洲无人区一区二区三区| 国产肥白大熟妇bbbb视频| japanese色国产在线看免费| 机机对机机手机免费下载版大全| 精品人妻二区中文字幕| 最近中文字幕免费mv| 日韩系列视频在线观看有码| 中文字幕人妻熟女AV| 国产一区二区不卡免费看| 久久久久国色AV免费观看性色| 亚洲成高清日本亚洲成高清| 日韩精品视频在线观看午夜| 国产精品人妻系列21P| www.日本国产在线观看| 国产69精品久久久久久人妻精品 | 少妇人妻综合久久中文| 女同久久精品国产99国产精品| 97精品国产综合久久香蕉| 亚洲欧美日韩一级在线| av在线一区二区观看| 黄色午夜欧美视频| 99精品国产在热久久国产乱| 91精品国产91久久久久| 亚洲日日精AV无码区A片| 无码不卡黄片一区| 一区二区三区不卡播放无码| 亚洲2021欧美日韩在线精品 | 午夜热播电影院动作电影免费观看完整版视频 | 国产精品免费成人av| 国产va在线观看免费看| 精品国产一区二区av片| 国产日韩av一区二区在线| 中文在线а√在线| 视频一区二区欧美| 亚洲欧美日韩在线网| 国产精品欧美久久二区66| jizz国产免费观看| 一级国产片一区二区三区| 白嫩少妇激情无码| 日本一区二区在线小视频| 人妻高清视频一区二区三区| 国产第1页欧美61794| 国产伦精品一区二区三区免 | 日本亚洲乱码中文字幕影院| 大地资源色婷婷视频在线| 久热久爱免费精品视频在线| 337p日本欧洲亚洲高清鲁鲁| 欧美亚韩一区二区三区| 一区二区三区在线免费观看视频| 在线中文无码字幕| av在线一区二区观看| 国产乱子伦精品无码专区| 中文字幕人妻一区二区河南实里| 波多野结衣AV高潮在线看| 久久无码专区国产精品S| 成人无码免费一区二区三区| 欧美激情综合五月| 国产亚洲午夜福利专区| 成人国产精品一区二区网站公司 | 国产精品女久久久一区二区| 久久久久88色偷偷| 亚洲精品成人无码中文毛片不卡 | 四虎影视在线永久免费观看| 人妻精品福利一区| 国产亚洲精品久久777777美腿| 大鷄巴亂倫的肉欲小说| 日本乱中文字幕系列| A级无码免费毛片视频| 一级aⅤ片在线看| 色婷婷一区二区三区四区成人网| 浪潮a∨无码在线| 大鷄巴亂倫的肉欲小说| 久久99精品成人网站| 国产精品亚洲国产在国产成人精品 | 伊人av综合网鸭子av| 国产精品一区二区色欲AV| 亚洲免费观看视频| 国产xxxx在线观看视频| 欧美欧洲成人一区二区免费| 亚洲欧美日韩国产成人精品| 久久―日本道色综合久久| 国产无遮挡又黄又爽视频无码免费| 亚洲欧洲日产国码无码久久99| 日韩亚国产欧美三级| 精品一区二区三区无码av孕妇| 欧美性猛交xxxx乱大交丰满| 国产卡1卡2卡3仙踪林老狼| 欲求不满人妻一区二区三区| 亚洲AⅤ无码精品一区二区三区 | 国产后入内射视频在线观看不卡| 国产成人无码精品久久久免费| 亚洲一区日韩高清| 久久国产亚洲av无码四区| 红杏国产成人精品视频| 一区二区三区免费不卡视频| 国产 一区二区三区 在线| 狠狠色婷婷丁香综合久久| 日韩人妻精品无码一区二区三区| 天堂在\/线中文官网| AV波多野结衣在线网站| 亚洲日韩精品欧美一区二区 | 亚洲另类无码一区二区三区| 强奷妇系列中文字幕| 亚洲欧美日韩综合一区在线| 日韩欧美国产综合在线播放| 国产精品自产拍在线| 亚州一区二区三区久久AA| 国内精品自线一区二区2021| 9 9久久精品无免国产…..| 极品国产主播粉嫩在线| 国产99爱在线视频免费观看| 91精品国产99久久9a级| 熟妇人妻精品一区二区视频色欲| 在线观看无码不卡AV中文| 秋霞无码久久一区二区| 青草伊人久久综在合线亚洲| 夂久无码专区国产精品| 亚洲国产成人黄色视频| 亚洲成av人一级牲交片| 日韩AV无码久久永久10| 毛片久久网站五月丁香| 伊人色综合久久天天五月婷| 国产熟女高潮视频| 99九九99九九精彩视频| CaoPoron在线视频| 在线二区三国产中文字幕| 亚洲精品无码久久毛片| 在线观看91精品国产2021| 国产麻豆黄色色免费| 亚洲国产综合AⅤ99精品| 亚洲成AV人片天堂网久久| 国产一级爱做c免费视频| 国产人成91精品免费观看| 国产浪潮AV无码喷水| 欧美韩黄片手机在线视频 | 特级毛片久久久久久久免费| 黄片视频在线播放一区二区| 一区二区三区高清日韩中文字幕| 国产h片在线免费观看视频| 免费不卡无码av在线播放 | 性色欲网站人妻丰满中文久久不卡| 浪荡女天天不停挨CAO日常视频| 欧美有码在线观看| 国产在线精品一区二区不卡麻豆| 久久夏同学国产免费观看| 亚洲韩国日本va精品国产一区| _国产一区日韩二区欧美三区| 福利姬在线喷水一区二区| 性欧美大胆无码免费视频一| 国产h动漫视频磁力链接| 久久久久人妻av一区二区三区| 动漫精品一区二区三区视频| 国产无遮挡18禁无码免费| 榴莲网站在线观看| 老头把我添高潮了A片| 国产放荡对白视频在线观看| 国产aⅴ一区二区三区精华液 | 亚洲欧美日韩在线网| 久久久青青久久国产精品| 亚洲欧美中文高清在线专区| 亚洲精品熟女国产| 国产精日韩精品欧美精品不卡| 国产大全久久激情综合电影 | 亚洲av综合久久无| 国内精品久久久久久久97牛牛| a国产一区二区免费入口| 亚洲欧美最新中文字幕| 国产精品一区二区三区不卡| 久久精品伊人一区二区三区| 欧美性受XXXX白人性爽| 国产黄色在线观看| 亚洲第一区欧美国产综合86| 久久99热这里只有精品| 亚洲综合熟女久久久30P| 91久国产在线观看| 国产一区二区免费在线观看| 2021国产精品成人免费视频| 国产青春草在线观看视频| 国产精品国内免费一区二区三区| 日韩av人人夜夜澡人人爽| 精品AV无码国产一区二区| 国产午夜不卡影院| 精品一区二区三区中文字幕在线| 99久久精品九九亚洲精品| 中文有码日本高清在线视频| 久久人人爽人人爽人人爽| 国产一在线精品一区在线观看| 天天噜狠狠噜日日噜A片泽泽 | 惠民福利精品国产免费一区二区三区| 不卡一区二区三区福利视频| 蜜臀国产精品毛片久久久| 国产日韩欧美在线观看不卡| 亚洲欧洲日韩国产一区二区三区| 少妇欧美激情一区二区三区内射| 午夜福利a 级在线| 国精产品一区一区三区有限| 免费毛片欧洲毛片| 亚洲精品第一国产综合精品| 熟女精品蜜桃一区二区三区| 国一精品免费视频| 美女的胸又黄又www网站| 97爱亚洲综合成人| 日本免费一区二区三区毛片| 国产一区网站视频在线观看| 国产在线国偷精品免费看 | GOGOGO免费高清在线| 最近中文字幕免费mv| 午夜精品成人一区二区| 亚洲一区二区av高潮| 免费精品无码成人片在线观看| 2020欧美日韩国产系列| 国产人成无码不卡视频| 国产精品毛片A∨一区二区三区| 亚洲一级av无码毛片| 无码国产精成人午夜视频不卡| 人人做人人妻人人精| 日本三级在线看一区二区| 免费一区二区无码av| 亚洲韩国日本va精品国产一区| 妺七AV导航福利| 区产品乱码芒果精品p站| 日韩精品一区二区三区不卡| 免费精品国自产拍在线不卡| 久久大香伊蕉在人线观看热| 中文字幕久久精品有码综合网 | 人人妻人人爽人人澡av毛片| 国内精品伊人久久久久妇| 日本α级一区二区在线免费观看| 国产av无码一区二区三区18| 亚洲国产精品精华液999| 亚洲国产欧美一区二区图片| 午夜寂寞视频无码专区| 亚洲欧美色国产综合| 国产精品久久久久香蕉| 97在线视频人妻无码| 天堂va欧美va亚洲va国产 | 中文国产成人精品久久一区| 中文字幕丰满伦子无码| 国产高潮流白浆免费观看| 欧美亚洲国产日韩精品自拍| 视频一区二区欧美| 四川少妇WBBBB搡BBBB嗓| 日本a一区二区三区大片| 国产精品久久人妻无码网站一区| 亚洲中文无码AV永久主页| 国产三级在线免费观看| 成人欧美一区二区三区| 1313在线观看国产| 欧美又粗又硬又爽直播大片 | AV中文字幕网免费观看| 久久精品国产自在一线| 久久精品中文字幕久久| 天堂AV旡码AV在线A2020V| 国产亚洲精品bt天堂精选| GOGOGO电影的更新时间| 女人18毛片A片免费视频小说| 女人18毛片A片免费视频小说| 大粗鳮巴久久久久久久久| 亚洲中文字字幕AV影院| 啊好痛把我的批日出水了| 欧美二区三区久久久精品| 97精品国产手机| 日本精品少妇一区二区三区| 久久精品国产亚洲av成人动漫 | 久久精品综合亚洲精品鲁鲁| 国产免费小黄片视频| 亚洲精品国产熟女久久久| 欧美丰满熟妇xxxx性| 五月国产综合视频在线观看| 国产精品k频道免费观看| 精品久久久久久免费人妻| 国产v亚洲v天堂a_亚洲| 一区二区三区中文字幕有码| 麻豆短视频在线观看| 果冻传媒国产区二期| 亚洲日韩精品无码AV海量| 国产噜噜亚洲牛牛AV一二三区| 国产成人精品高清国产三级| 精品免费国产观看| 中文字幕亚洲综合久久菠萝蜜| 亚洲精品久久一区二区三区777| 精品无码国产AV综合| 精品日韩中文字幕av| 婷婷射精AV这里只有精品| 69国产精品免费视频| 免费一区二区无码av| 人人妻人人澡人人爽精品日本| 精品国产三级a∨在线欧美| 国产主播在线观看一区二区| 国产成人精品最新| gav成人免费一区二区 | 一区二区三区四区精品电影| 6080YYY午夜理论片中无码| 国产中文一级特黄aa大片| 少妇被粗大的猛烈进出69影院一 | 亚洲午夜福利1区2区| 国产精品无码一区二区三区在| 亚洲av无码成h人动漫无遮挡不卡 在线精品国产成人综合第一页 | 久久国产成人亚洲精品影院| 精品国产污污免费网站入口| 免费人成短视频在线观看网站| 在线三级观看国产| 在线亚洲精品国产二区图片欧美| 日韩AV影院在线观看| 国产亚洲精品AAAA片在线播放| 午夜精品福利视频网站| 日美中文字幕在线播放| 丰满少妇猛烈进入A片88| 国产疯狂女同互磨高潮在线看| 2020最新大胆偷拍美女视频| 国产精品无码a∨麻豆| 国产精品碰碰现在自在拍| 日韩欧美一区二区三区视频| 一级a爱做片免费观看国产| 亚洲欧美日韩丝袜一区二区| 最近2019年日本中文免费字幕| 国产精品视频免费观看调教网| 欧美国产另类在线制服丝袜| 亚洲欧美激情精品一区二区| 亚洲欧美日韩一不卡二不卡| 高清无码国产免费片| AL无码在线观看高潮喷水| 亚洲天堂久久精品| 色噜噜亚洲男人的天堂| 亚洲性夜夜天天天| 精品h无遮挡在线看| 少妇人妻综合久久中文| 成人永久高清在线观看| 在线播放亚洲国产一区二区三| 在线看片国产日韩欧美亚洲| 大地资源色婷婷视频在线| 亞洲免費人成在線視頻觀看| 国产精品一区二区尿失禁| 国产精日韩精品欧美精品不卡| 中日韩一区二区在线观看| 欧美日韩亚洲激情在线观看 | 大粗鳮巴久久久久久久久| 亚洲欧美国产日韩一区二区三区| 床震吃奶摸下成人a片在线观看| 在线观看欧美日韩一区二区不卡| 国内精品自线一区二区2021| 亚洲精品乱码久久久久久麻豆| 国精产品一区一区三区有限| 精品乱色一区二区中文字幕| 不卡精品一区二区无码免费视频| 国产日韩厂亚洲字幕中文| 日韩av无码一区二区三区啪啪3| 国产成人久久精品流白浆| 思思久久96热在精品国产| 四虎永久在线精品免费a| 夂久无码专区国产精品| 国产亚洲精品性爱视频| 免费日韩一区二区三区免费视频| 欧美熟老熟妇色xxxxx| 精品国产仑片一区二区三区| 尤物99在线视频观看| 免费秘羞羞视频观看网大全| caoporon草棚在线视频147| 国产精品亚洲国产在国产成人精品 | 亚洲精品无码永久在线观看你懂的| 欧美精品九九久久久久久| 成 人 h 高 潮在 线 观 看| 亚洲无码免费观看黄色| 日韩欧美另类卡通在线视频| 亚洲精品国产精品制服丝袜| 99无码人妻一区二区三区免费| 强行18分钟处破痛哭AV| 人妻AV无码AV中文AV日韩AV| 一区二区三区四区中文字幕在线| 欧美国产亚洲一区综合久久| 国产精品亚洲а∨天堂123| 中文人妻熟妇乱又伦精品| 亚洲高清国产拍青青草原| 国产欧美日韩一区二区一| 日本一道高清一区二区| 亚洲日韩精品欧美一区二区| 亚洲A∨永久纯肉无码精品| 国产日韩AV在线播放| 日本免费高清欧美一区二区| 中文字幕无码高潮按摩到痉挛| 国产精品久久人妻无码网站一区 | 国产精品视频免费观看调教网| 亚洲一精品一区二区三区天堂| 午夜精选在线观看| 97se狠狠狠狼鲁亚洲综合网| 精品无码一区二区三区爱欲88| 无码国产精品一区二区高潮| 久久精品国产黄片| 自拍视频一区二区电影| 国产肥白大熟妇bbbb视频| 欧美日韩国产一区二区三区在线| 人妻无码中文专区久| 东京热无码国产精品| 天天干天天操天天干| 久久无码国产日本欧美| 精品久久久久久亚洲国产300| 久久久青青久久国产精品| 亚洲欧美国产另类在线| 日本精品啪啪一区二区三区| 免费人成短视频在线观看网站| 亚洲一区av无码少妇电影| 日韩一级欧美一级操逼| 久久人人97超碰国产精品| 在线观看免费人成视频| 日韩欧美亚洲三级在线| 本年度最佳亚洲日产高清乱码 | 久久人人97超碰国产精品| 夜夜爽妓女8888888视频| 国产精品免费视频色拍拍| 欧美在线视频不卡| 丰满人妻无码∧V区视频| 一级a爱做片免费观看国产| 老头把我添高潮了A片| 日韩av无码制服丝袜| 日韩A毛片一区二区三区免费视频| 亚洲成在人网站天堂一区二区| 久久久久久久成人午夜精品福利| 国产第1页欧美61794| 四库影院永久国产精品| 曰韩欧美群交P片内射| 国产成人人人97超碰超爽8| 在线观看国产免费一级av| 亚洲av无码成h人动漫无遮挡不卡| 极品少妇被猛得白浆直流草莓视频 | 国产爆乳无码视频在线观看| 国产精品伦子一区二区三区| 婷婷综合久久中文字幕| 四虎国产精品永久在线下载| 久久久久Av免费无码久久| 国产精品对白交换绿帽视频| 久久精品一区二区无码Av无码 | 国产亚洲女人久久久毛片| 欧美人与动xxxxz0oz| 国产精品无码久久AⅤ人妖 | 亚洲欧洲日产无码av网站| 日本一道高清一区二区| 久久精品国产自清天天线等最新內容 | 人人妻人人澡人人爽精品日本| 国产婷婷精品成人一区二区三区 | 亚洲av日韩精品久久久久久| 亚洲欧洲日产国码最新| 亚洲欧美日韩丝袜一区二区| 中文有码日本高清在线视频| 精品一区二区无码| 国产色网久久综合精品| 最近更新2019中文字幕在线| 亚洲午夜久久久久| 国产日韩AV在线播放| 国产亚洲精品久久久无码网站| 无遮挡激情视频在线观看| 色综合网亚洲精品久久| 国产欧美日韩精品A在线观看| 日本成人中文字一二三区| 久久精品国产91精品亚洲高清| 欧美成人免费一级片| 一区二区免费高清观看国产丝瓜| 久久精品国产亚洲av成人动漫| 久久久青青久久国产精品| 揉捏奶头高潮呻吟视频| 青青草99久久精品国产综合| 亚洲熟妇av一区二区三区下载| 国产成人精品自在钱啪| 久久国产精品最新一区| 国产精品亚洲а∨天堂免| 久久视频这里只精品| 国产好吊妞在线视频观看一| 中文字幕一区在线观看视频| 亚洲日本Va午夜在线电影| 国产精品无码色综合| 91超碰伊人五月天| vr亚洲不卡二区三区三区四区| 89碰碰碰人妻无码免费看| 91麻豆欧美久久九色| 永久地址网址亚洲国产| 欧美性猛交xxxx乱大交丰满 | 国内外一级黄色毛片在线播放 | 在线观看成人免费视频不卡| 丝袜在线一区二区三区视频| 亚洲国产精品无码动态图| 97久久超碰国产精品不卡| 一级做a爰片欧美一区| 亚洲精品在线网站| 精品国产91久久久久| 日本一道本高清一区二区| 久久影视这里只有精品国产| 日韩精品第一区二区三区,| 浪荡女天天不停挨CAO日常视频 | 黑人巨大精品欧美| 成在人线av无码免费看网站| 亚洲国产精品精华液999| 天天做天天爽中文777| 亚洲国产精品一区二区九九| 尤物99在线视频观看| 亚洲最大色大成www网站| 青青青国产VA在线观看视频| 久久精品国产清自在天天线| www.日本国产在线观看| 天堂俺去俺来也www色官网| 国产一区二区三区在线观| 国产麻豆最新精品在线| 亚洲国产精品原创巨作AV| 国产精品成人免费视频一区丝袜| 亚洲午夜性猛春交xxxx| 1769成人国产精品视频| 好疼啊好硬啊别视频| 日韩在线观看一区二区三区四区 | 人妻无码中文专区久| 国产亚洲综合区成人国产| 久久国产亚洲av无码麻豆| 人妻熟妇无码一二三区视频| 精品久久一区二区三区| 亚洲av无码成h人动漫在线观看| 久久人妻无码aⅴ毛片花絮| 2021久久精品国产99国产精品| 国产嘘嘘视频久久久国产盗摄| 亚洲午夜久久久久| 日本不卡在线视频二区三区| 啊好痛把我的批日出水了| 欧美午夜精品一区二区蜜桃_| 亚洲色无码a片一区二区潘甜甜| 免费人成毛片动漫在线播放| 精品国产这么小也不放过| 色欲综合视频天天天| 国产嘘嘘视频久久久国产盗摄| wc女厕撒尿七ⅴ偷拍| 国产农村一一级特黄毛片| 强壮公让我夜夜高潮a片视频| 成年无码av片在线| 日韩一区二区三区在线播放| 激情久久久久久久久久久| 精品少妇人妻AV免费久久久| 狠狠色噜噜狠狠狠狠888奇禾| 亚洲国产乱码一区二区| 在线刺激视频网站免费视频| 97在线视频人妻无码| 亚洲高清国产拍精品熟女| 色噜噜国产精品视频一| 日韩欧美一区二区三区视频 | 亚洲精品国产欧美一二区| 国产日韩欧美一区二区三区综合| 日本不卡在线视频二区三区 | 中文字幕精品无码2021| 欧美亚洲国产一区二区三区| 亚洲V无码一区二区三区四区观看| 亚洲AV无码专区春药在线观看 | 欧美精品91在线| 欧美成人一卡二卡三卡| 最近中文字幕mv在线资源| 国产亚洲另类无码专区国语| 国内精品伊人久久久久777| 久久精品国产亚洲av不卡网站| 国产成人综合网在线播放| 欧美日韩一区二区三区视频播放| 国语自产精品视频在线九九| 午夜免费福利电影院| 日本AⅤ精品一区二区三区| 白嫩少妇激情无码| 国产一区二区三区免费久久久蜜臀 | 国产精品丝袜诱惑| 91麻豆精品国产专区在线观看| 狠狠狠狼鲁亚洲综合网| 国产精品免费视频一区| 在线观看国产免费一级av| AV日韩综合一区亚洲| 欧美日韩在线免费观看欧美日韩| 国产午夜精品一区二区三区欧美| 久久国产乱子伦免费精品| 国产亚洲欧美在线专区| 69av在线播放| 国产模特私拍久久| 精品一区二区三区成人精品| 成人做爰视频WWW在线观看| 久久影视一区二区三区久久| 日本AⅤ精品一区二区三区| 日韩精品一区二区久久多人| 中出内射颜射骚妇| 久久影视精品一区二区三区| 嗯啊灬别停啊灬用力灬快| 四虎国产精品亚洲一区久久特色| 久久人妻AV中文字幕| 中文字幕AV伊人AV无码AV | 久久亚洲精品成人综合| 无码人妻斩一区二区三区| 爱情岛论坛首页永久入口| 国产草莓视频无码A在线观看| 日韩欧美亚洲综合一区二区| 人妻无码AⅤ中文字| 四虎永久在线精品免费a| 色呦呦一区二区三区| 久久视频这里只精品| 神马免费午夜福利剧场| 在线观看精品国产福利片一香蕉人…` | 精品无码国产AV综合| 亚洲欧美一区在线| 黄色视频福利网址www| 国产l精品国产亚洲区| 成人区人妻精品一熟女| 91久久青草精品38国产| 日本不卡在线视频二区三区| 亚洲国产婷婷六月丁香| 激情五月婷婷丁香久久| 日本熟妇人妻XXXXX| 日韩精品一区二区中文在线观| 久久精品综合亚洲精品鲁鲁| 日本高清免费不卡一区二区| 婷婷综合久久狠狠色99h| 午夜福利在线欧美激情| 含羞草实验室隐藏路径2023| 久久大香伊蕉在人线观看热| 在线日本观看视频一区二区| av在线一区二区观看| 亚洲中文波霸中文字幕| 国产又黄又免费aaaa视频| 国产成人无码免费直播| 久久国产综合精品| 亚洲成AV人片天堂网久久| 亚洲中文人妻字幕视频| 精品国产乱子伦一区| 韩国日本亚洲免费| 自拍大香蕉一区二区三区| 亚洲va韩国va欧美va天堂| 久久天天拍天天爱天天躁| oldvideo熟妇日本老太| 九九九热精品免费视频观看| 国产成人精品自在钱啪| 国产在线观看免费人成视频| 日韩精品永久在线| 激情不卡 一区二区三区| 在线人成免费视频69国产| 国内精337P日本大胆欧美人视频| 久久精品国产91精品亚洲高清| 国产精品久久人妻拍拍水牛影视| 韩国无码av片在线电影网站 | 97精品国产综合久久香蕉| 人妻高清视频一区二区三区| 亚洲一区二区av高潮| 久久久国产精品无码三级| 男女高潮又爽又黄又无遮挡| 无码日韩综合一区二区三区| 国产成人综合亚洲精品国产| 日韩中文人妻无码不卡一区| 亚洲欧美一区二区不卡精品| 亚洲无人区午夜福利码高清完整版| 日本黄网站三级三级三级| 亚洲最大日韩中文字幕另类| 欧美三级在线播放| 日本亚洲中文字幕不卡| 国产成人精品在线一区二区| 亚洲精品国产精品乱码不卡 | av国内精品久久久久影院| 国产午夜激无码av毛片不卡| 91尤物国产尤物福利在线| 亚洲精品91香蕉综合区| 日韩专区一区二区在线播放| 中文字幕第1页先锋影音| 欧美激情内射喷水高潮| 日本熟妇厨房bbw| 在线亚洲精品国产二区图片欧美 | 丰满少妇人妻无码| 日韩精品无码久久久观看| 国产日韩av播放在线不卡| 欧美日韩亚洲一区二区| 强行18分钟处破痛哭AV| a在线视频播放观看免费观看| 国产aⅴ无码久久丝袜美腿西西| 97久久久久久久人妻精品专区| 国产精品性感美女av| 色情久久久AV熟女人妻网站| 欧美一区二区成人免费| 欧美一区在线黑人大吊| 亚洲久综合在线导航| 乱中文字幕69一区二区四区| 日本亚欧乱色视频在线系列| 男女一边做一边爽免费视频| 国产欧美日韩精品高清在线不卡| 欧美精品超清视频每日更新| 久久久这里只有免费精品| 欧美在线视频不卡| 亚洲欧美中文高清在线专区| 日本高清无卡码一区二区久久| 2024中文字幕一区二区三区| 少妇高潮抽搐在线视频| 少妇自拍影视精品| 蜜芽尤物原创AV在线播放| 精品一区二区三区无码av孕妇| 中文天堂在线最新版www| 久中文字幕在线一区二区| 亚洲高清国产拍青青草原| 国产日韩一区二区夜夜嗨| 99人妻熟女国产精品日韩资电话| ZOZ○Zo女人和另类Zoz0| 精品久久一区二区三区| 日韩AV影院在线观看| 亚洲精品丝袜国产字幕久久| 亚洲欧美18岁网站| 少妇被粗大的猛进69视频| 精品一区二区三区无码av孕妇| 国产在线一区二区AV| 爽爽影院色黄网站在线观看| 亚洲春色AV无码专区在线播放| 国产精品无码久久久| 亚洲精品无码永久在线观看你懂的| 亚洲日韩欧美中字另类| 人妻无码AⅤ中文字| 成人国产精品视频一区二区 | 深夜福利小视频国产| 日韩不卡1卡2卡三卡网站| 久久久无码精品亚洲日韩在| 久久亚洲春色中文字幕久久| 欧美日韩亚洲一区二区内射| 国产成人亚洲精品无码mp4| 亚洲性人人天天夜夜摸| 天堂va欧美va亚洲va好看va | 亚洲H精品动漫在线观看| 日韩欧美视频免费在线观看| 一本一道波多野结衣AV中文 | 亚洲国产欧美一区二区图片| 免费无码AV片在线观看中文| 内射中出日韩无国产剧情| 国产女人高潮的av毛片| 精品视频一区二区三区艾草| 少妇被粗大的猛烈进出69影院一 | 欧美13一14娇小性| 国产毛A片啊久久久久久按摩| 中文字幕无码av波多野吉衣| 婷婷五月天激情电影| 亚洲精品中文字幕乱码三区一二 | 免费av无码久久一本通| 欧美日韩国产人妖色视频| 人妻人人做人做人人爱| 久久国产精品1区2区3区网页| 自拍视频一区二区电影| 麻豆最新国产AV原创精品| 日韩~欧美一中文字幕| 狠狠色噜噜狠狠狠狠888奇禾| 精品日本一区二区三区不卡| 91人人捏人人模人人爽| 2017男人天堂手机在线| 精品免费视频无码的不卡网站 | 少妇泬出白浆18P试看| 嗯啊强上在线视频| 成人區精品一區二區不卡| 亚洲欧美日韩亚洲中文色| 青青国产成人久久激情91| 亚洲欧美日韩一级在线| 东京热无码一区二区AV| 青青草99久久精品国产综合| 内射欧美国产日韩高清在线 | 中文字幕在线精品无码一区| 人妻精品国产一区二区| 国语自产偷拍精品视频偷| 不卡无码在线观看视色| 床震吃奶摸下成人a片在线观看| 国产亚洲精品国产福利在线观看| 日韩精品永久在线| chinese乱子伦videos| 国产精品久久一级c片| 久久精品国产电影一区| 黄页毛片网站大全在线免费观看| 无码国模国产在线观看| 国产成人精品久久综合| 最近更新在线中文字幕一页| 日本韩国少妇一级做α高潮| 最近中文字幕免费国语6| 日韩精品中文字幕免费在线观看 | 久久国产亚洲av无码四区| 搡BBBB推BBBB推BBBB| 亚洲熟女综合色一区二区三区四区 | 亚洲精品无码久久毛片99| 五月丁香六月综合缴清无码| 成在线人免费视频| 国产精品无码久久AⅤ人妖 | 人妻少妇精品视频三区二区一区| 久久久这里只有免费精品| 日韩精品一区二区中文在线观| 精品一区二区三区最新中文字幕| 国产精品观看在线| 欧美日韩精品一区二区三区发布 | 国产成人精品午夜2022| 美女福利视频一区| 国产精品高潮呻吟av久久4虎| 无码一区二区三区精品不卡| 色伦专区97中文字幕| 国产精品无码一区二区三区高潮| 国产亚精品毛片ⅤA一区二区三区| 最色的最黄的美女视频| 国产日韩欧美在线观看不卡| 国语久久久精品成人欧美日韩国产中文大片| 成人羞羞视频国产| 中文字幕不卡欧美日韩免费| 牛牛视频精品一区二区不卡| 97久久超碰国产精品不卡| 男人天堂网站在线| 手机看片av无码免费午夜| 无码成a人片在线观看| 国产精品女久久久一区二区| 国产高清日韩欧美一区二区三区| 国产AV仑乱内谢| 精品成人国产自在现拍| 亚洲成在人线av品善网好看| 国产精品碰碰现在自在拍| _国产一区日韩二区欧美三区| 国产啊v在线看免费播放| 欧美视频成人在线| 国产亚洲另类无码专区国语| 亚洲国产精品免一区二区三区| 岳放弃反抗开始迎合| U91大神在线观看精品无码| 欧美精品日韩精品一卡| 18禁真人抽搐一进一出免费| 国产精品久久久久无码人妻| 欧洲亚洲成人一区二区三区| 亚洲第一区无码专区| 色视频一区二区三区国色| 换人妻做爰xxⅹxxa片| 亚洲爆乳成av人在线视菜奈实| 榴莲网站在线观看| 国产电影在免费播放在线观看 | 欧美日韩综合一区二区三区| 久99频这里只精品| 国产对白熟女受不了了| 亚洲欧美国产另类在线视频| 91精品国产91久久久久| 国产99爱在线视频免费观看| 国产亚洲另类无码专区国语 | 国产精品一区二区免费播放视频| 日韩美女在线观看一区| 成人精品午夜久久久久久| 国产精品无码久久综合日韩| 久草视频国产在线观看| 亚洲一级av无码毛片| 久久国产精品亚洲va麻豆| 偷拍亚洲欧洲一二三| 国产成人AV电影在线观看第一页 | 国产成人欧美日韩在线观看| 国产亚洲TV在线观看| 国产精品亚洲五月天高清| 日本乱子人伦在线视频 | 国产成人亚洲精品无码mp4| 女人一级特黄大片| 精品免费久久一区二区三区四区| 暴虐SM灌浣肠调教A片男男| 99亚洲日韩国产精品无玛| 欧美线人一区二区三区| 亚洲熟女精品久久久av| 狠狠色噜噜狼狼狼色综合久| 日韩欧美国产综合在线播放| 国产猛男猛女超爽免费视频| 欧美日韩人妻精品一二三区免费| 日韩av人人夜夜澡人人爽| 国产欧美一区二区视频在线播放 | 欧美午夜理论片1000在线播放| av嫩草影院免费观看| 新版天堂资源在线| 三级久久久国产精品一区| 亚洲av成人片色在线观看| 欧美亚洲中文字幕高清 | 日韩和欧美一区二区在线| 精品私人尤物在线精品视频| 在线亚洲AV成人无码中文| 成人天堂资源www在线| 欧美一区二区激情啪啪| 久久精品男人影院| 亚洲av日韩av制服丝袜第一页| 日韩特黄视频一区二区三区| 机机对机机手机免费下载版大全| 亚洲综合日韩专区在线| 女性高爱潮AAAA级视频试看| 国产成人无码精品午夜福利a| 国产亚洲精品福利在线无卡一 | 欧美日韩视频一区三区二区在线观看| 婷婷激情综合亚洲| 一区二区三区无码毛片真人| 国产人妻精品av一区| 欧美大BBBB流白水喷水视频| 亚洲Av有声小说一区二区| 四川bbb搡bbb搡多| 久久精品免试视看国产成人 | 国产a级毛片久久久久久粗大| 欧美亚洲中文字幕高清| 给我免费播放片高清在线观看视频 | 国产午夜激无码av毛片不卡 | 三级综合欧美中文| 久久亚洲网站视频| 亚洲AV乱码专区国产噜噜亚洲| 欧美精品在线91| 亚洲天堂成人在线免费网站| 人妻少妇精品一区二区三区| 日韩精品欧美高清区| 国产欧美一区二区三区日韩| 在线日本观看视频一区二区| 国产偷窥熟女高潮精品视频| 国产精品99女人久久久久久| 不卡视频精品在线免费观看| 婷婷综合久久狠狠色成人网| AV无码精品一区二区三区宅噜噜| 四虎国产精品成人永久免费| 亚洲国产精品人久久电影app | 欧美综合自拍亚洲综合网| 五月丁香开心欧美| 国产综合激情在线亚洲第一页| 三级吃奶头添泬玉蒲团2| 亚洲精品成人av观看青青| 日韩精品一区二区中文在线观| 国产V亚洲V天堂A无码99| 国产色网久久综合精品| 欧美成人看片一区| 2021国产高清免费V无码| 久久久久久国产精品三级| 日韩一卡2卡3卡4卡5卡网址| 国内精品一区二区三区四| 最新国产成人精品2021| 国产一区二区三区福利视频在线观看| 最色的最黄的美女视频| 欧美三级在线播放| 国产永久嫩草大学生av| 中文字幕精品亚洲一区| 国产一区二区视频免费在线播放| 国产亚洲精品久久久久久无几年桃| 一个人的视频在线观看WWW免费无码| 在线看片国产日韩欧美亚洲| 国产噜噜亚洲牛牛AV一二三区| 国产乱码一二三区精品| 精品久久亚洲中文字幕| 国产在线观看成永久视频| 中文字幕无码人妻AAA片| 国产成人一区=区| 成在线人免费视频一区二区| 日韩一区久久久久久久| 国产AV仑乱内谢| 蜜臀精品久久久久一区二区三区| 亚洲人成人77777在线播放| 国产午夜片无码区在线播放| 成人日韩熟女高清视频一区| 99久久国产成人免费网站| 国产在线观看成永久视频| 亚洲婷婷五月色香综合缴情| a在线视频播放观看免费观看| CHINESE性内射高清5| 国产精品狼人久久久久| 精品氩 99久久久久久黄无码| av激情一区二区三区| 免费的性开放网站交友网站| 亚洲欧美日韩亚洲中文色| 国产麻豆精品视频一区二区| 啊好痛把我的批日出水了| 欧美日韩在线观看专区| 无码不卡中文字幕AV| 99RE热视频这里只精品4| 欧美日韩国产综合精品| 国产精品国产三级国产av一区| 亚洲成a人片在线观看无码专区| 国产精品第一国产精品| 亚洲av日韩av制服丝袜第一页| 中文国产日本在线播放免费| 亚洲经典无码视频| 久久99精品国产| jizz中国免费在线播放麻豆视频| 深夜福利小视频国产| 日韩精品国产精品一二三四在线 | 精品无人乱码一区二区三区的特点| 偷拍视频一区二区三区| 亚洲最大日韩中文字幕另类| 日本无码中文字幕在线播放| 国产91色在线精品三级| 日韩欧美精品中文字幕久久| 天堂成品人短视频网页版| 亚洲精品亚洲国产3区| 精品国产三级a∨在线欧美| 亚洲熟妇无码一区二区三区| 亚洲乱码精品久久久久..| 亚洲人成电影网站| 中文字幕久久精品有码综合网| 久久综合婷婷五月| 久热精品一区二区| 免费观看的无遮挡AV| 精品无码AV人在线观看| 久久天天拍天天爱天天躁| 99精品国产在热久久国产乱 | 国产丝袜美女一区二区三区| 国产视频亚洲一区| 美女国产毛片a区内射| 亚洲韩国日本欧美一区二区三区| 天天做天天爽中文777| 国农村精品国产自线拍| 国产日韩成人亚洲丁香婷婷| 国产在线观看成永久视频| 国产一区二区免费在线观看| 久久人人爽人人爽a大片 | 精品无码一区二区三区av| 日本欧美视频在线观看| 久久久久久久成人午夜精品福利| 精品免费视频无码的不卡网站| 色欧美与xxxxx| 91久久精品无码一区二区大| 午夜精品一区二区三区三上悠亚| 日韩在线三区不卡| 国产一区二区三区在线看| 欧美精品久久国产欧美日韩| 99精品国产在热久久国产乱| 精品国产仑片一区二区三区| 美女裸体自慰在线观看| 久久综合给合久久狠狠狠97色| 精品国产福利一区二区三区| 亚洲影视欧美国产| 亚洲无码真人精品视频自拍| 青青青国产VA在线观看视频| 免费观看成人黄网站18禁视频 | 日韩精品一区二区中文在线观| 日韩精品无码专区免费| 一区二区三区黄页网视频| 亚洲国产av无码精品无广告| 亚州一区二区三区久久AA| 日本欧美视频在线观看| 国产精品一区二区免费播放视频| 欧美一区二区激情啪啪| 性色AV一区二区三区人妻| 亚洲精品久久久久国色天香| 精品国产3p一区二区三区| 久久久久久99av无码免费网站| 日本中文字幕乱码八a∨| 狠狠色伊人亚洲综合网站l | 色欲av无码无在线观看| 亚洲爆乳www无码专区| 亚洲午夜福利1区2区| 亚洲欧美日韩中文播放| 亚洲色无A片一区二区夜夜嗨| 亚洲一区国产二区日本三区| 国产女主播福利一区二区| 熟女高潮一区二区三区69av| 69视频在线精品国自产拍| 丰满少妇xxxxx| 亚洲性人人天天夜夜摸| 便劲快到高潮了国产对白在线| 国产aⅴ大篇网站| 天堂在/线资源中文在线| 日韩欧美在线免费一区二区| 亚洲精品久久久久国色天香| 日本大香伊蕉一区二区| 日本高清一本二本三本如色坊| 国产成人精品视频一区二区不卡| 亚洲精品综合一区二区三区在线 | 中文字幕a∨无码一二三区电影| 久久视频这里只精品| 18禁在线网站点击进入| 99久久婷婷国产综合亚洲| 99久久免费只有精品国产| 丝袜人妻中文字幕| 强奷妇系列中文字幕| 在线香蕉一区二区三区| 91精品国产国语对白视品| 欧美一级片免费在线| 日韩精品无码专区免费| AV午夜久久蜜桃传媒软件| 精品高清中文在线观看| 国产激情久久久久老熟女影院| 久久精品久久国产| 久久天天拍天天爱天天躁| 99精品国产福久久久久久| 久久国产乱子伦精品| 国产永久免费草莓网视频| 久久伊人成色777综合网| 国产最爽乱淫视频国语对白 | 无码人妻斩一区二区三区| 国产av无码一区二区三区18| 影视大全在线观看| 日韩国产免费一区二区三区在线| 精品一品国产午夜福利视频| 人妻丰满熟妇aν无码区乱| 亚洲欧美色中文字幕在线| av一区二区三区在线看| 日韩精品久久久一区| 国产精日韩精品欧美精品不卡| 亚洲欧美精品AAAAAA片| 国内精品一区二区三区四| 亚洲综合图区天堂在线| 曰韩欧美群交P片内射| 国产av永久无码青青草原| 69亚洲日本va中文字幕婷婷| 日韩无码精品专区| 亚洲精品a久久久久久七| 香蕉欧美大胸视频在线播放| av嫩草影院免费观看| 国产欧美久久一区二区三区| 亚洲香蕉中文日韩V日本| 欧美人妻一区二区三区品尝网| 国产亚洲欧美一区二区三区乱码| 午夜福利精品久久久久久| 中国农村自拍HDXXXX| 啪啪无码人妻丰满熟妇| 国产美女精品久久久| 国产一级特黄aa大片视频| 欧美国产伦久久久久| 成人国产精品秘片多多| 成人春色在线观看免费网站| 亚洲一区av无码少妇电影| 成人午夜久久成人亚洲| 美女视频免费永久观看的| 九九九热精品免费视频观看| 成人美女视频一区二区三区| 91精品国产白丝无码网站| 六十路熟妇高熟无码av种子| 午夜福利在线欧美激情| 国产成人精品无码免费看夜聊软件| 国产精品成人免费视频不卡| 8毛片A级18女人水真多| 日韩精品一二三四区| 亚洲高清一区二区欧美 | 欧美一区二区精品在线视频| 国产一二三区韩国女主播| 午夜寂寞视频无码专区| 国产一级爱做c免费视频| 日本精品久久久久999| 久久综合一区网址| 青青草国产午夜精品| 亚洲欧美日韩中文在线制服bd高清 | 国产又黄又免费aaaa视频| 欧美三级欧美一级亚洲| 亚洲黄色三级毛神片在线看| 亚洲欧美日韩一区二区三区在线| 日韩美女免费播放一级毛片j| 国产一区二区三区不卡网站| 91久久青草精品38国产| 亚州第一页欧美日韩精品| 好疼啊好硬啊别视频| 国产亚洲TV在线观看| 欧美国产日韩A在线视频| 欧美日韩综合免费视频| 最新恐怖电影在线观看| 亚洲人成电影网站| 久久涩综合国产色综合免费| 蜜桃av久久久亚洲精品| 亚洲精品中文字幕午夜在线| 欧美日韩中文字幕综合| 久久丁香五月天综合网| 日韩一级黄色毛片| 红桃视频一区二区三区| 亚洲影院天堂中文av色| 久久99精品久久久久久hb| 久久婷婷国产综合精品| 高清一区二区三区视频不卡 | 亚洲2019AV无码网站在线| 顶级国内国模无码视频| yw亚洲a∨无码乱码在线观看| 国产亚洲h网综合h网;| 午夜热播电影院动作电影免费观看完整版视频 | 亚洲女人的天堂白慰| 亚洲成a人片在线观看中文无码| 欧洲美熟女乱又伦av| 亚洲欧洲日韩国产一区二区三区| 欧美视频一区在线观看| 成人做爰视频WWW在线观看| 99在线精品视频高潮喷吹| 国产超碰97人人做人人爱| 亚洲日韩精品欧美一区二区| 一个人免费观看在线高清国产婷婷综合| 大地资源色婷婷视频在线| 国产成人综合亚洲看大片| 无遮挡激情视频在线观看| 2018久久精品免费视频| 国产在线精品一级A片| 91高清免费国产自产拍| 成人做爰A片免费播放金桔视频| 欧美成人免费黄色一级片| 欧美视频不卡一区二区三区| 在线观看一区二区三区国产免费| 一区二区三区黄页网视频| 亚洲成片在线观看京东热| 无人区码一码二码三码医生系列| 青青国产成人久久激情91| 婷婷人人爽人人爽人人A片| 97久久超碰精品视觉盛宴| 久久99热不卡精品免费观看| 日韩精品一区二区亚洲av观看黄色| 国产亚洲日韩欧美另类第八页| 最近最新在线观看免费高清完整版| 亚洲日韩在线观看免费视频| 一级黄色视频播放| 最新恐怖电影在线观看| 尤物精品国产第一福利网站| 亚洲人成一区二区不卡| 亚洲旡码AV中文字幕| 国产乱码日韩一区二区三区| 欧美一级片免费在线| 人与动人物XXXXAV片下载| 亚洲91无码精品一区在线播放| 国产精品亚洲综合无码}| 日韩久久中文字幕蜜桃a| 免费专区一一色哟哟| 日韩亚洲欧美在线com| 亚洲精品成人无码中文毛片不卡| 欧美亚洲亚洲精品三区| 亚洲AV无码专区春药在线观看| 少妇人妻中文字幕系列在线看| 中国无码人妻丰满熟妇| 成年男女免费视频在线观看不卡| 成在线人免费视频一区二区| 五月激情综合婷婷丁香花| 亚洲中文字幕在线第二页| 欧美一级片免费在线| 色五月五月丁香综合久久| 国产精品无码久久综合日韩| 日韩美女免费播放一级毛片j| 少妇被粗大的猛进69视频| 毛片久久网站五月丁香| 国产欧美精品久久久久久TⅤ| 亚洲欧美日韩中文播放| 人妻少妇免费无码专区| 日韩精品亚洲人旧成在线| 免费啪视频一区二区三区| 日本免费一区二区三区高清视频| 女性高爱潮AAAA级视频试看| 国产午夜成人免费看片无遮挡| 亚洲欧美日韩在线综合网| 蜜臀av性久久久久蜜臀aⅴ麻豆 | 国产精品亚洲国产在国产成人精品| 日韩一级黄色毛片| 国产婷婷久久久久久| 黄色午夜欧美视频| 国产亚洲TV在线观看| 91极品尤物在线观看播放| 精品亚洲国产成人AV在线| 又黄又爽一区二区免费看| 久久无码视频高清| 久久精品国产精品亚洲丝| 国产女人爽到高潮a毛片| 欧美日韩不卡一卡2卡三卡4卡5卡 国产在线97色永久免费视频 | 2020最新大胆偷拍美女视频| 亚洲精品国产成人一区二区 | 精品在久久免费线中文字幕| 精品国产中文字幕乱码免费| 在线CRM网站建站| 免费精品国自产拍在线不卡| 日韩精品一区二区三区四区66| 日本三级带黄在线观看欧美| 极品嫩苞撕裂哭叫灌白浆在线观看 | 好看中文字幕一区二区三区四区| 亚洲国产三级在线观看| 国产又黄又免费aaaa视频| 国产浮力第一页草草影院| 黄色午夜欧美视频| 欧美裸体xxxx极品少妇| 亚洲第一区欧美国产综合| 国产探花在线观看| 一级一区二区在免费线观看| 三年中文在线观看免费大全中国 | 97香蕉碰碰人妻国产欧美| 国内精品伊人久久久久妇| 久久影视这里只有精品国产| 久久久精品国产免大香伊| 狠狠色噜噜狠狠狠狠色综合网 | 久久久一本精品99久久精品66直播 | av鲁丝一区二区| 成人区人妻精品一熟女| 奇米精品视频一区二区三区 | 丝袜无码专区人妻视频| 欧美视频在线看三区| 四虎国产精品成人永久免费| 日本中文字幕乱码八a∨| 国产嘘嘘视频久久久国产盗摄| 尹人香蕉久久99天天拍| 久久99热这里只有精品| 三级吃奶头添泬玉蒲团2| 不卡一区二区三区高清在线| 国产精品亚洲产品三区| 欧美性猛交xxxxx按摩欧美| 一区二区三区国产在线播放| 国产精品久久毛片av大全| 成人国产对白普通话在线播放| 一区二区三区四区中文字幕在线 | 成年无码av片在线| 天天做天天摸天天爽天天爱| 欧美日韩人妻精品一二三区免费| 好大好湿好硬顶到了好爽视频| 日韩美女免费播放一级毛片j| 日韩一区二区中文字幕第一页 | 蜜臂精品毛片av一区二区三区| 精品国产三级AV一区二区| 国产精品成人免费视频一区丝袜| 人妻丰满熟妇无码区| 国产福利男女xx00视频| 丝袜人妻中文字幕| 久久精品女同亚洲女同| 一级片好爽黄色视频| 性色欲网站人妻丰满中文久久不卡| a国产一区二区免费入口| 国产主播在线观看一区二区| 国产精品无码一区二区三区高潮| 国产91亚洲一区在线观看| 欧美一区日韩二区国产三区| 精品一区中文字幕一区二区三区 | 国精产品久拍自产在线网站| 四虎国产精品亚洲一区久久特色| 五级黄色一区二区观看网站| 乱人伦中文视频在线| 欧美日韩国产大陆一区二区| 国产91色在线精品三级| 免费国产黄网站在线观看| 亚洲日本欧美三级| aⅴ视频分类国产在线视频| 人妻中文在线一区二区三区| 亚洲av无码一区二区三区人妖 | 国产射在线观看视频播放| 亚洲国产美女精品久久久| 少妇又黑又粗又大无码A片直播| 爆乳熟妇一区二区三区霸乳| 性欧美大胆无码免费视频一| 国产日韩av播放在线不卡| 欧美综合自拍亚洲综合网| 亚洲欧美日韩在线综合网| 美女的胸又黄又www网站| 国精偷拍一区二区三区| 午夜福利精品久久久久久| 伊人久久大香线蕉综合75| 日日摸日日碰夜夜爽亚洲| 国产成人一区二区三区免费3p| 亚洲欧洲日产无码av网站| 国产精品毛片一区久久久| 四虎永久在线精品国产免费| 强壮公让我夜夜高潮a片视频| 亚洲性高清SUV| 91青青青国产在观免费影视| 午夜放荡视频人与禽| 中文字幕AV伊人AV无码AV| 欧美成人综合久久精品| 青青国产成人久久激情91| 91探花国产综合在线精品在线观看| 国产精品对白交换绿帽视频| 久卡国产精品久久久毛片这多| 无码午夜人妻一区二区三区不卡视频 | 97午夜福利影视大全| 玉瑶公主高h喷汁呻吟| 国产欧美久久一区二区| 国产一区二区精品在线观看| 日本美女一级福利视频| 亚洲欧美一区在线| 精品人人妻人人澡人人爽人人| a国产一区二区免费入口| 久久亚洲国产成人精品性色| 丁香婷婷视频在线播放| 国产精品白浆无码流出| 欧美日韩国产综合精品一区| 欧美一本视频一区二区| 国产成人片AⅤ在线观看| 无码人妻丰满熟妇啪啪7774| 亚洲欧洲日韩av在线| 亚洲A成人片在线网站| 日本欧美国产三级精品电影| 色伦专区97中文字幕| 久久天天躁狠狠躁夜夜2020老熟妇 | 人人妻一区二区三区| 精品国产aⅴ无码一区二区| 中文字幕欧美三级精品| 国产偷国产偷亚州清高APP| 强壮公让我夜夜高潮a片视频| 乱码精品一区二区三区在线观看| 亚洲综合色成在线播放| 亚欧日本污污一区在线观看| 加比勒色综合久久| 精品视频一区二区三区在线视频| 亚洲中文字幕在线第二页| 日韩特级无码精品毛片| 中文字幕无码高潮按摩到痉挛| 精品国产一区二区三区av性色| 国产伦精品一区二区三区高清版禁| 国产精品人妻无码久久久郑州| www.日本国产在线观看| 日美中文字幕在线播放| 中国无码人妻丰满熟妇| 不卡av手机在线免费观看| 亚洲婷婷五月色香综合缴情| 久久精品人人看人人爽| 亚洲国产高清一区二区在线| 色综亚洲日本w在线| 欧美成人精品A片免费一区99| 日韩无码一区中文| 亚洲欧美日韩国产综合精品二区 | 亚洲国产成人黄色视频| 国产亚洲精品线观看动态图| 国产成人精品最新| 男人把Ji大巴放进女人免费视频 | 四虎国产精品永久在线网址| 精品国产综合成人亚洲区2022| 国产品无码一区二区三区在线| 9i看片成人免费视频| 真人做爰a片免费观看茄子视频| 欧美日韩免费做爰大片人 | 亚洲性日韩精品一区二区三区| 国产又黄又免费aaaa视频 | 国产欧美一区二区精品性色99| 日韩AV无码久久永久10| 中文字幕不卡高清视频在线| 噼里啪啦电影在线观看免费高清| 精品一区二区三区四区毛片费| 久久久久无码精品国产情侣| 在线日韩av免费永久观看| 无码人妻斩一区二区三区| 在线岛国片免费无AV| 幺女幺女国产一级中文毛片在线看| 爆乳美女高潮喷水动态图| 女十八毛片水真大免费看| 最近中文字幕免费高清av| 欧美成人精品高清在线观看| 9精品人妻一区二区三区蜜桃| 欧美XXXX做受欧美88| 久久精品中文字幕久久| 中文字字幕国产精品| 国产高清在线精品一区| 97精品国产97久久久久久| 97午夜福利影视大全| 久久久99精品免费观看| 国产日韩欧美一区二区| 日本精品久久久久999| 国产一卡2卡3卡4卡精品| 色综合天天综合狠狠爱_| 韩国日本免费不卡钱在线看| 国产日韩欧美一区二区三区综合| 亚洲av成人片色在线观看| 日韩另类动漫一区二区| 伊人久久精品欧洲综合网| 中文字幕一区二区三区不卡| 亚洲2021欧美日韩在线精品 | 亚洲av大全一区二区三区| 欧美性猛交xxxx乱大交丰满| 2021国产成人综合亚洲精品| 欧美精品日韩精品一卡| 国产极品美女高潮无套在线观看| 成人国产对白普通话在线播放| 欧美无人区码卡二卡3卡4免费 | 亚洲国产成人字幕久久| 亚洲国产欧美在线人成aaaa| 婷婷综合久久中文字幕蜜桃三电影| 亚洲精品久久久久国产| 国产成人AV电影在线观看第一页| 97超级碰碰碰久久久久毛片 | 久久婷婷五月综合| 国产老熟女久久久久久| 久久人妻无码毛片a片涩天使| 国产日韩成人亚洲丁香婷婷| 一个人免费观看在线高清国产婷婷综合| 91精品在线欧美| 久久久久久人妻一区二区| AV成人无码无在线观看| 综合激情婷婷丁香五月蜜桃 | 成年人午夜福利在线播放| 国产成人精品在线一区二区| 亚洲成a人无码成a无码| 一级特黄aaa国产大片| 美女的胸又黄又www网站| 国产福利一区二区三区在线观看| 国产福利在线永久视频| 国内丰满少妇一a级毛片视频| 一级特黄大片欧美久久久| 人妻丰满熟妇岳av无码| 亚洲精品偷拍无码不卡AV| 久久精品人妻少妇一区二区三区| av在线播放一本久| 97久久久久久久人妻精品专区| 亚洲精品91香蕉综合区| 欧美日韩国产看片一区二区| 性做久久久久久久久一区二区| 国产又黄又免费aaaa视频| 日本免费播放视频乱码伦| 亚洲熟妇丰满XXXXX| 日美中文字幕在线播放| 成在线人免费视频一区二区| 这里只有精品无码在线视频| 四虎8848精品成人免费网站| 人人添人人妻人人爽夜欢视av| aⅴ视频分类国产在线视频| 人妻精品福利一区| 东京热欧美精品不卡| 人人妻人人澡人人爽曰本| 久久中文字幕一区二区三区四区| 日本啪啪一区二区不卡视频 | 中文字幕Av一区乱码| 午夜放荡视频人与禽| 一级做性色a爰片久久毛片| 亚洲精品无码久久毛片 | 久久久午夜成人噜噜噜| 久久亚洲中文字幕精品一区四| 免费久久精品国产片| 亚洲国产精品无码久久SM| 大鷄巴亂倫的肉欲小说| 久久国产乱子伦免费精品 | 国产第一页久久亚洲| 国产美女精品人人做人人爽| 国产免费一区二区三区视频| 狠狠色综合久久丁香婷婷| 日本无码观看一区二区三区| 青青青国产VA在线观看视频| 人妻少妇精品无码专区二区| 成人综合激情在线| 欧美激情综合五月| 最近2019年日本中文免费字幕| 亚洲欧洲日韩国产一区二区三区 | 亚洲成AV人影片在线观看| 羞羞色院91精品永久站| 国产日韩欧美高清在线一区| 久久精品囯产精品亚洲| 黄色一级网站毛片免费网站| 91精品国产91久久久久| 国产亚洲精品福利在线无卡一| 无码日韩综合一区二区三区 | 人妻的ⅤA无码视频| 日韩中文人妻无码不卡一区| 在线三级观看国产| 在线日本观看视频一区二区| 国产视频在线观看中文字幕| 狠狠躁夜夜躁人人躁婷婷 | 亚洲旡码AV中文字幕| 久久午夜无码鲁丝片午夜精品特黄无码| 一区二区三区四区精品电影| 国产一级特黄aa大片视频| 亚洲熟妇AV日韩熟妇AV| 免费成人日韩精品视频| 幺女幺女国产一级中文毛片在线看| 亚洲成在人网站天堂一区二区 | 欧美国产日韩A在线视频| 一级看黄免费网站| 日韩在线精品一区| 野花香在线视频免费观看大全| 久久免费国产视频精品| 久久婷婷五月综合| 无码人妻精品一二三区免费| 国产精品人鲁杂交黄色片| 99久久国产综合精品女图图等你 | 国产乱子经典视频在线观看| 一区二区三区精品在线| 一级做a爰片欧美一区| 性欧美视频videos6一9| 在线观看亚洲日本综合| 少妇熟女图片区视频一区| 亚洲国产一区二区精品无码| 2019国产精品视频| 少妇极品熟妇人妻无码不卡一二三区| 久久精品人人看人人爽| 天天躁日日摸久久久精品| 亚洲av日韩精品久久久久久| 亚洲国产成人黄色视频| 国产精品狼人久久久久| 欧美日韩视频一区三区二区在线观看 | 国产亚洲精品线观看动态图| 国产乱淫精品一区二区三区毛片 | 国产不卡的丝袜综合在线| 最新免费中文字幕一区二区视频 | 国产成人高清亚洲一区| 日本精品一区二区不卡免费| 久久人人爽人人爽人人片ⅴ| 中文字幕人妻精品一区二区| a级黄色视频在线免费观看| 国内精品自线一区二区2021 | 亚洲精品国产乱码久久久1区| 久久东京热这里只有精品视频| 偷拍视频一区二区三区| 在线看片免费人成视频播| 久久久久免费看黄a级试看| 变态另类国产亚洲| 另类亚洲色大成网站| 日韩精品一区二区三区四区66| 精品国产V无码大片在线看 | 欧美国产日韩一区二区| 在线日本视频午夜毛片 | 精品少妇爆乳无码av专用区| 国产a国产片国产| 不卡精品一区二区无码免费视频| 亚洲欧美中文高清在线专区| 俺去俺来也www色官网| 最新恐怖电影在线观看| 国产色诱午夜免费视频| 日韩在线观看一区二区三区| 欧美日韩另类综合一区在线观看| 99精品视频在线观看15| 久久久久亚洲精品国产国产高清黄色在线观看91 | 好男人看在线视频| 精品无码久久久久久无码专区| 欧美精品久久久久久久久久| 国产精品伦子一区二区三区| 插出白浆的动漫在线观看| 综合在线一区 男同| 欧美色综合天天久久综合精品| 国产亚洲另类无码专区国语 | 最近中文字幕免费高清av| 亚洲电影在线观看| 一区二区三区日韩在线免费观看 | 99久久精品视频一区二区| 国产精品久久一级c片| 精品无码一区二区三区av| 国产亚洲精品久久久无码网站 | 亚洲精品无码久久久yin| 国产成人AV免费网址| 97视频国产中文字幕| 国产免费一区二区三区最新不卡 | 真人做爰a片免费观看茄子视频| 国产精一品亚洲二区在线播放 | 精品私人尤物在线精品视频| 丰满岳妇乱一区二区三区| 亚洲av日韩av无码a一区二区三区| 亚洲免费精品国产一区二区| 在线日韩视频一区二区三区| 国产精品毛片一区二区在线| 欧美日韩中文字幕综合| 亚洲欧美一区在线| 亚洲中文无码AV永久主页| 妺七AV导航福利| 国产大全久久激情综合电影| 国产亚洲视频中文字幕97精品| 有码中文无码中文无码人妻| 久久精品一区二区中文字幕日本| 国产亚洲欧美一区二区精| 亚洲欧美丝袜精品久久中文字幕| 521人成a天堂v| 人妻制服丝袜无码中文字幕| 国产欧美日韩在线不卡第一页| 少妇人妻好深太紧了A片VR| 韩国日本亚洲免费| 亚洲日韩欧美婷婷综合久久| 国产精品露脸国语对白 | 国产成人综合亚洲精品国产| 少妇一级片无码免费高清| 亚洲无码成人在线| 俺去俺来也www色官网| 亚洲一区二区av高潮| 四虎永久在线精品884aa| 日韩人妻无码免费视频一二区| 亚洲成人一区二区三区四区| 国产一区二区三区欧美一区| 丝袜美腿精品国产一区| 91精品在线欧美| 欧美,日韩,国产一区二区 | 亚洲日本欧美三级| 亚洲一区二区三区免费卡| 日本国产三级片免费观看| 亚洲视频在线播放一区二区| 人人干人人噪人人摸| 亚洲一区二区三区精品中文字幕 | 国产精品第一国产精品| 精品在久久免费线中文字幕| 在线观看国产黄片| 日本免费播放视频乱码伦| 国产日韩欧美黄片一区二区| 性色AV一区二区三区人妻| 亚洲日本欧美三级| 人妻被粗大猛进猛出69国产| 青草伊人久久综在合线亚洲| yw亚洲a∨无码乱码在线观看| 精品国产伦一区二区三区ax| 亚洲性夜夜天天天| 熟女丰满老熟女熟妇| 国产一二三四2024大象| 国产成人亚洲精品无码mp4| 极品少妇被猛得白浆直流草莓视频 | 欧洲美熟女乱又伦av| 又大又黄又粗高潮免费| 激情久久久久久久久久久| 精品愉拍自拍视频| 日韩欧美另类自拍一区| 午夜国产精品福利网站| 真人无码作爱免费视频禁hnn| 亚洲蜜臀精品一区二区三区 | 永久地址网址亚洲国产| igao国产视频| 国产精品无码永久在线观看| 噼里啪啦完整版中文在线观看| 免费观看成人黄网站18禁视频| 成人永久高清在线观看| 2023国内精品久久久久精免费| 激情综合五月婷婷丁香啪啪| 国产精品videossex国产高清| 99国产第一页在线| 无码人妻精品一区二区蜜桃色| 精品国产av一区二区三区6| 久久精品国产亚洲AV孟若羽 | 亚洲国产成人无码影片| 国产AV熟女一区二区| 亚洲av无码成h人在线观看| 伊人成年网站综合网| 亚洲国产成人精品一区二区三区| 嗯啊强上在线视频| 电影网在线亚洲一区| 午夜福利a 级在线| 无码夜色一区二区三区| 四虎永久在线精品884aa| 国产亚洲欧洲av综合一区二区三区| 蜜桃av噜噜一区二区三区| 亚洲精品一区 精品二区| 国精品人妻无码一区二区三区喝尿| 日本不卡一区二区三区 视频| 亚洲一级aⅴ无码毛片理| 国产一级久久久久毛片精| 日本免费高清欧美一区二区 | 日韩精品人妻一区二区中| 国产精品性感美女av| 天美传媒妇乱XXXXX视频| 国产va在线观看免费看| 中文字幕乱码人妻| 国产日韩精品一区二区三区在| 精品免费视在线视频观看| 亚洲天堂欧美国产| 免费不卡国产精品午夜福利在线 | 老王亚洲福利在线观看| 国产XXXX视频在线观看免费| 精品一区二区三区无码免费视频| 久久伊人成色777综合网| 丝袜白浆国产17c| 久久人妻无码毛片A片麻豆| 国产精品亚洲专区无码唯爱网| 精品免费国产观看| 亚洲韩国日本欧美一区二区三区| 国产乱子伦农村叉叉叉| 啪啪无码人妻丰满熟妇| 日本高清免费不卡一区二区|