亚洲国产原创剧情av,亚洲日韩乱码中文无码蜜桃臀,国产亚洲精品第一综合另类灬免费观看国产精品视频,欧美专区在线视频,日韩一级黄色毛片,久草视频在线不卡,男人一边吃奶一边做爰免费视频,制服丝袜国产日韩亚洲欧美成人久久一区,伊人av无码av中文av狼人

佳學(xué)基因遺傳病基因檢測機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因正確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動的言論。
評價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設(shè)計(jì)制作 基因解碼基因檢測信息技術(shù)部

gav成人免费一区二区| 亚洲欧美中文日韩v在线97| 免费久久精品国产片| 91麻豆欧美久久九色 | 在线日本视频午夜毛片| 国产免费丝袜调教视频| 国产一区二区免费在线观看| 久久三级中文欧大战字幕| 久久精品综合热久久| 国产精品videossex国产高清 | 亚洲欧美一区在线| 亚洲综合日韩精品欧美综合区| 中文字幕精品在线一区二区| 天美传媒妇乱XXXXX视频| 日韩精品无码专区国产| 日本亚洲中文字幕不卡| 久久精品黄色影片| 青青青国产VA在线观看视频| 成人做爰A片免费播放金桔视频| 国产精品资源网站在线观看| 人妻无码AⅤ中文字| 国产大秀视频一区二区三区| 久久精品国产99国产精品亚洲| 日韩欧美精品中文字幕久久| 蜜国产精品jk白丝av网站| 黄色一级视频超好看| 高清有码国产一区二区| 久久精品国产亚洲av不卡网站| 午夜三级A三级三点| 国产精品自产拍在线| 日韩一区二区三区无码a片| 国产午夜福利不卡在线看| 国产青榴视频在线观看| 亚洲精品123区在线观看| 欧美日本无码一区二区三区 | 免费成人日韩精品视频| 成年无码av片在线| 日美中文字幕在线播放| AV日韩综合一区亚洲| 亚洲欧洲日韩av在线| 日韩美女免费播放一级毛片j| 蜜桃视频成人专区在线观看| 亚洲成高清日本亚洲成高清| 国产成人精品久久综合| 国产精品一区二区色欲AV| 亚洲经典无码视频| 中文天堂在线资源www| 亚洲成人第一区第二区| jizz国产免费观看| 波多野结衣精品一区在线| 久久精品国产亚洲av麻豆影院 | 一区二区在线免费| 久久伊人热精品老鸭窝| 亚洲一区二区中文| 欧美国产日韩A在线视频| 国产一区二区三区自产| 免费久久人人爽人人爽AV| 蜜臀精品久久久久一区二区三区| 亚洲国产成人久久综合人| 免费精品久久天干天干| 91精品国产91久久青草| 亚洲色大成永久ww网站 | 女人一级特黄大片| 国产亚洲精品久久精品6| 在线新拍精品国产91| 久久亚洲中文字幕精品一区四| 婷婷综合久久中文字幕| 国产精品中文字幕久久| 亚洲av禁18成人毛片一级在线 | 欧美黑人又粗又大高潮喷水| 欧美日韩亚洲综合另类ac| 一本大道视频精品人妻| 国产人成91精品免费观看| 亚洲愉拍自拍视频一区网手机版| 国产成人综合一区二区三区| 91视频免费观看高清观看完整 | 亚洲色大成网站www永久在线观看| 久久三级中文欧大战字幕| 久久久无码精品亚洲日韩在| 久久涩综合国产色综合免费| 天天干天天操天天干| 国产一区二区三区自产| 旧里番亚洲国产一区| 无码一级高潮喷水电影| 国产成人无码免费网站| 国产精品黄片AV| 国产一级二级精品毛片| 久久国产亚洲av无码四区| 日日碰狠狠丁香久燥| 色视频一区二区三区国色| 97久久超碰精品视觉盛宴| 国产成人亚洲综合无码精品| 欧美又大又硬又粗BBBBB| 18禁止午夜福利体验区| 欧美日韩另类国产在线观看| 97久久超碰精品视觉盛宴| 久久伊人热精品老鸭窝| 国产乱码日韩一区二区三区 | 久久久久亚州AⅤ无码专区首| 免费黄色国产视频| 久久国产福利一区二区三区| 思思99久青草热精品免费观看| 国产精品99女人久久久久久| 久久精品女人天堂AV免费观看| 久久精品亚洲欧美日韩久久| 国产蜜芽尤物在线一区| 最好看的2019中文大全| 亚洲va韩国va欧美va天堂| 亚洲精品一区二区三在线观看| 国产亚洲视频中文字幕97精品| 日韩国产中文字幕在线视频在线 | 国内综合视频在线观看 不卡| B站永久看片免费| 欧美亚洲国产人成aaa| 国产电影在免费播放在线观看 | 一级无码性爱视频| 久久综合一区网址| 精品国产麻豆一区二区三区 | 国产日韩一区二区三区在线观看| 9999人体做爰大胆视频| 亚洲午夜一级AV手机在线播放| 亚洲欧美日韩在线观看播放| 午夜福利亚洲免费| 成人春色在线观看免费网站| 精品国产18禁99久久久久久| 9 9久久精品无免国产…..| 亚洲国产精品日韩av专区动漫| 欧美性生交xxxxx久久久缅北| 亚洲精品成人av观看青青| 无码成人精品久久久| 日韩欧美国产成人高清| 日韩和欧美一区二区在线| 免费久久精品国产片| 国产浮力第一页草草影院| 欧美中日韩一区二区| 精品国产天堂综合一区在线| 人人澡人人妻人人爽人人蜜桃| 精品久久久久久久久午夜福利| 日韩欧美亚洲三级在线| 伦伦影院精品一区| 精品综合无码在线观看| 精品伊人久久大香线蕉综合| 中文字幕欧美三区在线观看| 国产91色综合久久免费分享| 国产嘘嘘视频久久久国产盗摄| 日本AⅤ精品一区二区三区| 久久精品无码精品免费专区| 欧美日韩精品久久| 一区二区三区黄页网视频| 久久人人97超碰国产精品| 国产00高中生在线网站| 日本不卡一区二区三区 视频| 无码片在线观看视频| 亚洲国产成人黄色视频| 免费视频爱爱太爽了无码| 国内丰满少妇一a级毛片视频| 一级a爱做片免费观看国产| 亚洲日韩精品av成人波多野 | 91麻豆欧美久久九色| 亚洲综合图区天堂在线| 日韩在线观看一区二区三区| 日本精品久久久久999| 久久久国产精品黄毛片| 成人欧美日韩一区二区三区| 色欧美与xxxxx| 亚洲另类无码专区首| 人妻少妇精品无码专区APP| 国产一区精品普通话对白| 久久亚洲中文字幕精品一区四区| 欧美国产精品三级一区在线| 国产又粗又猛又爽又黄A片漫画 | igao国产视频| 最刺激黄a大片免费观看| 国产人成精品香港三级在线| 中文字幕大香视频蕉无码| 国精偷拍一区二区三区| 国产亚洲日韩欧美另类第八页| 国产精品资源网站在线观看| 国产日韩欧美在线观看不卡| 亚洲成a人片在线观看无码专区| 亚洲av无码精品黑人黑人| 国产AV极品嫩模| 色综合久久综合欧美综合网| 色情久久久AV熟女人妻网站| 日本不卡在线视频二区三区| 国产精品禁18久久久久久| 欧美成人a级视频免费| 日本乱码伦十八在线观看| 另类国产精品一区二区| 中文字幕亚洲一区二区va在线| 国语自产精品视频在线九九| 久久99国产精一区二区三区| 日本黄网站三级三级三级| 亚洲欧美日韩在线综合网| 国产人成无码不卡视频| 日韩精品人妻一区二区中| 香蕉视频在线精品视频| 亚洲国产成人久久综合人| 2020欧美日韩国产系列| 国产欧美二区综合| 亚洲国产精品原创巨作AV| 日韩久久精品五月综合| 欧美成人a级视频免费| 中文字幕被公侵犯的漂| 无码精品黑人一区二区三区| 亚洲日产无码中文字幕在线| 国产亚洲av片亚洲| 无码毛片一区二区视频| 婷婷六月综合缴情在线| 野花香在线视频免费观看大全| 国产婷婷精品成人一区二区三区 | 国产成人人人爆出白浆| 国产精品综合区在线观看| 国产91精品黄片| 91极品尤物在线观看播放| 一级国产做a爱的视频| 国产第一页久久亚洲| 精品一区二区三区国产在线 | 欧美亚洲国产精品三级| 久久精品中文一区二区日韩av| 91九色精品无码片一区二区三区 | 亚洲欧美日韩国产成人精品| 日韩国内欧美精品| 亚洲国产一区二区精品无码| 无码一区二区三区免费翁| 亚洲av无码乱码国产精品| 99爱在线精品视频免费观看| 99re在线播放视频| 韩国精品无码专区久久| 久久国产福利一区二区三区| 一本一道波多野结衣AV中文| 天天狠天天透天天爽| 9ⅰ精品人妻一区二区三区蜜桃| 日韩少妇无码精品专区| 饥渴人妻欲求不满在线| 国产欧美日韩一区2区| 日本在线看片免费大黄| 亚洲影视欧美国产| 成在线人免费视频一区二区| 26uuu精品一区二区| 国产欧美一区二区精品性色99| 日韩 欧美在线观看一区二区 | 国产激情综合五月久久| 国产精品自拍一二三四| 日本精品专区视频在线| 久久亚洲精品视频| 久久伊人五月天婷婷| 亚洲成a人片在线观看中文无码| 国产av性色av一区二区| 亚洲精品无码一区二区四区| 亚洲欧美人高清精品a∨| 真人无码作爱免费视频禁hnn | 中文字幕av一区三区| 女人18毛片A片免费视频小说| 国产18尤物在线观看| 美女人妻在线不卡视频| 欧美激情肉欲高潮视频| 1024手机看片久久国产| 欧美亚洲国产一区二区三区| 欧美久久大香线蕉无码| 国产无遮挡又黄又爽视频无码免费| 亚洲国产理论片在线播放| 少妇一级片无码免费高清| 国产精品18久久久久久vr| 日韩V亚洲V欧美V精品综合| 区产品乱码芒果精品p站| 人妻高清视频一区二区三区| 国产最爽乱淫视频国语对白| 国产日韩亚洲欧美看国产视频| 中文字幕一区二区三区地区 | 久久69国产精品二区| 天堂中文官网在线| 人妻系列av无码专区免费| 欧美午夜特黄AAAAAA片| 亚洲一区二区三区乱码| 中国老太婆BB无套内射| 久久精品一区二区二三区| 久久人人爽人人爽人人爽| 夜夜爽日日澡人人添蜜臀| 免费日本综合国产| 日韩一级欧美一级操逼| 久久精品无码日韩一区二区aⅴ| 欧美疯狂性受XXXXX喷水| 日本国产精品一区二区欧美 | 国产日韩av播放在线不卡| 三级国产女主播在线观看| 婷婷五月天激情电影| 国产欲女高潮抽搐出白浆| 新版中文在线资源| 欧美国产激情一区二区在线| 女十八毛片水真大免费看| 韩国精品无码专区久久| 被黑人掹躁10次高潮| xxx国产性按摩www性爽欧美| 久久影视这里只有精品国产| 日韩一级A片视频无码大尺度| 精品久久香蕉国产线看观看亚洲| 久久久久免费看黄a级试看| 国产三级亚洲精品| VIDEOSGRAIS欧美另类| 日产亚洲一区二区三区| 久久中文精品无码中文字幕下载 | 超碰成人人人做人人爽| 日韩天堂在线旡码| 尤物av一区二区三区| 亚洲色哟哟在线观看| 国产精品久久久久久久久KTV | 国产欧美日韩一区二区国产精品专区| 久久国产精品高清77777| 人妻无码中文专区久| 无码av在线播放| 亚洲精品国产熟女久久久| 久久人妻无码毛片a片涩天使| 欧美成人免费黄色一级片| 最新免费中文字幕一区二区视频| 欧洲亚洲成人一区二区三区| 最好看的2019中文大全| 一级特黄大片欧美久久久| 在线免费国产视频网站| 久久国产精品广西柳州门| 国产一在线精品一区在线观看| 成人欧美一区二区三区| 色老久久精品selao| 亚洲国产精品线路久久| 国产精品久久久一区二区| 国内精品伊人久久久久妇| 精品丝袜人妻久久久久久91| jizz国产免费观看| 女十八毛片水真大免费看| 久久免费口爆视频| 国产日韩av播放在线不卡| 久久亚洲精品视频| _国产一区日韩二区欧美三区| 2018国产精品自拍| 99国产一区二区三区亚洲| 亚洲国产三级在线观看| 欧美午夜理论片1000在线播放| 强操中文字幕在线观看| 天堂成品人短视频网页版| 亚洲日本Va午夜在线电影| 一区二区三区日韩在线免费观看| 精品国产精品乱码一区二区三区| 成人午夜久久国产18公司| 国产精品毛片A∨一区二区三区| 国产成人无码一二三区视频| 日本高清一区二区三| 大战丰满人妻性色AV偷偷| 日韩一级A片视频无码大尺度| 欧美日韩乱一区二区三区| 亚洲精品熟女国产| 国产偷国产偷亚州清高APP| 国产一区在线免费观看视频| 三级视频久久影院| 免费一区二区无码av| 国产AV永久无码精品网站| 亚洲婷婷五月激情综合APP| 国产精品不卡AV在线| 欧美亚洲国产精品一区二区| 旧里番亚洲国产一区| 午夜激情影院日韩| 国产又粗又猛又爽又黄A片漫画 | 欧美13一14娇小性| 国产精品网站视频| 一本大道在线无码一区| 国产精品久久一级c片| 亚洲欧美日韩高清综合678| 亚洲精品国产AV天美传媒| 搡BBBB推BBBB推BBBB| 亚洲中文字幕综合网址| 无人区码一码二码三码医生系列| 久久婷婷五月综合国产尤物APP| 久久国产电影三级片中文字| 中文字幕人妻熟女AV| 亚洲自拍偷拍视频网站| 中文字幕精品无码2021 | 亚洲欧美aⅴ精品一区二区| 乱伦中文无码免费| 欧美成人精品高清在线观看| 亚洲av无码成h人动漫在线观看 | 色欲色欲久久综合网| 午夜天堂AV天堂久久久| 亚洲av综合久久无| 久久久国产精品黄毛片| 人妻少妇精品无码专区二区| 精品国产亚洲美女久久久| 老熟女洗澡maturepom| 秋霞无码久久一区二区 | 久久国产综合视频| 机机对机机手机免费下载版大全| 中文字幕一区二区三区日韩精品| 搡的我好爽视频在线观看免费| 欧美精品第1页WWW| 欧美日韩综合免费视频| 野花社区www在线视频最新资源| 日韩欧美另类卡通在线视频 | 亚洲日韩欧美国产丝袜一区| 国产精品一区二区三区久久| aⅴ视频分类国产在线视频| 午夜寂寞视频无码专区| 天天干天天操天天干| 国产精品h在线观看| 精品乱色一区二区中文字幕| 国产香蕉97碰碰视频免费看| 成人一区二区三区四区五区在线| 高清一区二区三区视频不卡| 国产精品系列久久丝袜| 日本成人中文字一二三区 | 久久久国产亚洲精品日韩欧美高潮| 满宫春1一40集免费观看| 日韩欧精品无码三级片| 欧美视频一区在线观看| oldvideo熟妇日本老太| 玩两个丰满老熟女| 亚洲欧洲中文字幕第一区| av激情一区二区三区| 亚洲熟女综合色一区二区三区四区| 人人澡人摸人人添学生av| 最近中文字幕免费国语6| 久久精品女人天堂A片生理期| 亚洲高清无码肉肉视频| 国产在线观看高清精品| 日本a一区二区三区大片| 亚洲成A人片在线不卡一二三区| 极品人妻少妇一区二区三区| 野花香在线视频免费观看大全| 最近高清中文在线字幕观看6| 精品国产中文字幕乱码免费| 91精品国产国语对白视品| 岛国av无码免费无禁网站| 丁香五月亚洲中文字幕| 日韩人妻精品无码一区二区三区 | 国产精品拍在线天天更新| 精品人妻无码一区二区三区软件| 国产日韩精品一区二区三区在 | 永久无码国产AV| 亚洲欧美一区在线| 国产综合色视频在线播放| 91天堂视频在线观看| 日韩精品人妻午夜一区二区三区| 欧美日韩在线观看专区| 欧美无人区码卡二卡3卡4免费| 国产日韩欧美亚洲第一区| 久久亚洲制服丝袜综合网站| 色情久久久AV熟女人妻网站| 不卡的a 每日在线观看| 亚洲日韩图片专区小说专区 | 五月婷婷综合视频在线观看| 欧美,日韩,精品一区二区偷拍| 国产yin乱大巴视频| 午夜激情影院日韩| 欧美一级婬片AAAAAAA另类| 亚洲天堂欧美国产| 欧美日韩国产综合精品一区| 国产欧美日韩一区2区| 国一精品免费视频| 伊人av综合网鸭子av| 中文字幕一区二区三区蜜月| 四虎WWW永久在线精品| 亚洲欧洲日韩av在线| 强壮公让我夜夜高潮a片视频| 女人一级特黄大片| 无码一区二区三区裸体视频| 午夜福利不卡片在线机免费视频| 人妻少妇无码专视频在线| 亚洲av成人片色在线观看高潮| 久久国产电影三级片中文字| 亚洲色无A片一区二区夜夜嗨| 久久久精品午夜免费不卡| 亚洲精品久久久久久| 亚洲AV日韩AⅤ无码电影| 91精品国产99久久9a级| 韩国精品一区二区三区无码视频| 亚洲成AV人片天堂网久久| 亚欧美无遮挡HD高清在线视频| 在线a亚洲v天堂网2019无码| 国产精品乱子乱XXXX| 国产日韩欧美在线不卡精品 | 欧美毛多水多黑寡妇| 久久涩综合国产色综合免费| 97av麻豆蜜桃一区二区| 国产日本欧美亚洲精vr| 亚洲无码真人精品视频自拍| 香蕉在线精品视频在线| 欧美日韩亚洲综合另类ac| 国产成人A精品国产欧美精品V| 一本久道综合久久精品| 国产午夜片无码区在线播放| 亚洲精品国产欧美一二区| 亚洲色大成永久ww网站| 免费精品无码成人片在线观看| 中文字幕av一区三区| 97超级碰碰碰久久久久毛片| 国产日韩丝袜美女视频网站| 26uuu精品一区二区| 亚欧美无遮挡HD高清在线视频| 国产日韩丝袜美女视频网站| 国产一区二区三区免费播放| 久久精品久久精品国产大片| 国产成人拍拍拍高潮尖叫 | 国产亚洲精品福利在线无卡一| 国产精品青草久久久久福利99| 亚洲欧美国产日韩一区| 国产精品青草久久久久福利99| 国产欧美日韩一区2区 | 最近高清中文在线字幕观看6| 中文字幕aⅴ人妻一区二区蜜桃| 亚洲精品专区在线观看| 精品一级少妇久久久久久久| 无码精品日韩专区| 精品无码美妇视频网站| 99久久婷婷国产综合亚洲| 亚洲vs日韩vs欧美vs久久| 欧美日韩亚洲一区二区内射| 浪潮a∨无码在线| 国产一级爱做c免费视频| 国产精品久久久AV久久久| 中文无码欧美人妻日韩精品| 亚洲成A人片在线不卡一二三区 | 日本精品久久久久999| av网址在线免费观看得很| 国产91色综合久久免费分享| 久久青草精品欧美日韩精品| 国产aⅴ精品一区二区久久| 中文字幕国产精品一二区| 一级特黄特交牲大片| 国产放荡对白视频在线观看| 成人18+视频在线观看| 国产精品露脸脏话对白| 成人免费午夜精品一区二区| 欧美精品久久久久久久影视| 久久久久Av免费无码久久| 亚洲精品久久久中文字幕痴女| 国产在线播放日本| 三级综合欧美中文| 久久三级中文欧大战字幕| 成人做爰高潮a片免费视频| 91精品香蕉视频在线免费看| 狠狠五月深爱婷婷网| 久久天天躁狠狠躁夜夜av | 久久精品伊人一区二区三区| 国产精品久久久久香蕉| 欧亚一区二区三区av| 最近中文字幕高清免费大全1| 真实亲子乱一区二区| 美女大黄大色一级特级毛片| 久久精品中文字幕一区| 中文字幕在线亚洲日韩6页| 国产成人人人97超碰超爽8| 国产精品无码久久AV| 久久婷婷国产综合精品| 国精偷拍一区二区三区| 午夜福利精品久久久久久| 精品人人妻人人澡人人爽人人| 欧美日韩一区二区精彩视视频 | 91欧美激情一区二区成人| 午夜精品成人一区二区| 欧美精品91在线| 少妇泬出白浆18P试看| 国产h动漫视频磁力链接| 国产精品高潮呻吟AV久久4虎| 欧美成aⅴ人高清免费观看| 狠狠五月深爱婷婷网| 亚洲va韩国va欧美va天堂| 久久久不卡国产精品一区二区互動交流 | 亚洲国产精品区一区二区三区 | 丁香五月色情婷婷在线观看| 日本中文字幕一区二区有码在线| 免费无码黄在线观看www| 亚洲欧美日韩一不卡二不卡| 人妻少妇无码专视频在线| 成人综合亚洲欧美一区h| 久久国产亚洲av无码麻豆| 亚洲综合图片区自拍区| 中文字幕无码一区二区免费| 91手机看片国产永久免费| 亚洲免费精品国产一区二区 | 国产精一品亚洲二区在线播放| 亚洲国产综合性网站| 精品一区二区无码| 18禁在线播放点击进入| 国产一级特黄aa大片视频| 在线视频日韩一区| 国产精品亚洲а∨天堂免| 国产欧美二区综合| 2018久久精品免费视频| 日韩精品无码专区免费播放| 欧美日韩国产不卡| 国内精品乱码卡一卡2卡三卡 | 欧美精品一区二区五| 亚洲日日精AV无码区A片| 色欧美与xxxxx| 久久免费国产视频精品| 狠狠爱ady亚洲色| 婷婷综合久久中文字幕蜜桃三电影| 中文字幕丰满伦子无码| 成全视频观看免费高清| 国产精品视频免费观看调教网| 亚洲无人区午夜福利码高清完整版| 色综合久久综合欧美综合网| 亚洲午夜一区二区三区四区五区| 欧美中日韩一区二区| 国产白丝无码免费视频| 亚洲一精品一区二区三区天堂 | 人与性口牲恔免费视频| 国产成人av在线影院| 亚洲中文波霸中文字幕| 亚洲午夜性猛春交xxxx| 亚洲成av人片在线观看| 亚洲精品久久久久久AV| 久久久婷婷五月精品| 无码av免费一区二区三区四区| 无码av免费一区二区三区四区 | 极品国产主播粉嫩在线| 人妻制服丝袜无码中文字幕| 在线免费观看电影| 精品国产欧美日韩一区二区三区| 日韩无码4k一区二区| 惠民福利亚洲国产精品毛片av不卡在线| 欧美激情综合五月| 亚洲爱爱无码专区| 在线观看国产免费一级av| 亚洲国产精品久久电影欧美| 最近中文字幕免费国语6| 欧美线人一区二区三区| 日韩国产综合在线| 亚洲欧美最新中文字幕| 亚洲国产欧美婷婷| 大地资源色婷婷视频在线 | 中文字幕大香视频蕉无码| 精品人妻二区中文字幕| 成人春色在线观看免费网站| 欧美性猛交xxxxx按摩欧美| 国产男女视频在线免费观看| 人妻无码AⅤ中文字| 国产一区二区日韩欧美久久| jk白丝极品被cao到流水呻吟| 狠狠综合久久一区二区残暴| 国产真实乱对白精彩久久老熟妇女 | 啪啪无码人妻丰满熟妇| 婷婷综合久久狠狠色成人网| 国产成人精品高清国产三级| 免费观看国产精品视频大全| 爽爽影院色黄网站在线观看| 强奷漂亮的夫上司犯在线观看| 久久久久无码精品国产情侣| 囯产精品无码一区二区三区AV | 国外AV无码精品国产精品| 亚洲色图无码视频深夜福利| 人妻无码一区二区三区| 日韩人妻少妇精品视频在线| 久久国产精品一区二区视频| 色视频一区二区三区国色| 在线观看一区二区三区国产免费| 免费啪视频1000部在线观看| 最新日韩毛片一区二区三区| 国产在线精品一区二区三区在线| 国产在线国偷精品免费看| 国产高潮流白浆网站| 伊人色综合久久天天五月婷| 久久国产亚洲av无码四区| 韩国视频资源一区二区三区| 精品中文字幕1区,2区,3区| 国产99爱在线视频免费观看| 午夜放荡视频人与禽| 亚洲国产精品久久久一区二区 | 国产成人精品视频一区二区不卡 | 国产成人AV无码片在线观看| 国产成人麻豆亚洲综合无码精品产| 欧美三级欧美一级亚洲| 国产精品久久久久久熟女中| 一区二区在线免费观看| 久久精品日日躁夜夜躁| 一出一进一爽一粗一大视频免费的 | 精品三级综合少妇| 国产亚洲精品AAAA片在线播放 | 久久婷婷国产综合精品| 在线观看国产免费一级av| 一级做a爰片欧美一区| 另类亚洲色大成网站| 亚洲欧美综合图一图二| 久久精品二区三区四区| 日韩 欧美在线观看一区二区 | 亚洲一区二区中文| 国产h片在线免费观看视频| 岳放弃反抗开始迎合| 国产三级无码内射在线看 | av午夜无码免费播放器下载| 女教师大荫蒂毛茸茸| 亚洲成a人片在线观看无码专区| 夜夜澡亚洲碰人人爱av| 含羞草实验室隐藏路径2023| 欧美中日韩一区二区| 婷婷射精AV这里只有精品| 精品一级少妇久久久久久久| 国产成人精品亚洲精品密奴 | 五月国产综合视频在线观看| 国产成人啪精品视频免费视频| 精品无码国产av一区二区| 日韩乱码一区二区三区中文字幕| 一级特黄录像免费播放中文| 亚洲国产综合自在线身类| 国产办公室秘书无码精品99 | 亚洲精品一区二区三区新线路| 老妇女精品人妻一区二区av| 国产农村一二三区| 亚洲成a人无码成a无码| 欧美亚洲国产不卡在线看| 久久噜噜噜精品国产亚洲综合 | 浪潮a∨无码在线| 一个人看的在线www视频| 日韩一区二区三区四区免费电影| 成人免费观看黄a大片夜月国产| 国产xxxⅹ野性xxxxhd| 欧美中日韩一区二区| 床震吃奶摸下成人a片在线观看| 人人妻人人澡人人爽人人爱| 中国少妇饥渴XXXXX| 国产亚洲A∨片在线观看| 国产乱理伦片在线观看视频| 三级高清亚洲精品| 在线观看中文资源视频| 亚洲婷婷五月激情综合APP| 丰满的少妇XXXXX人| 久久精品人妻少妇一区二区三区| 国产白丝无码免费视频| 欧美精品久久久久久久久久| 久久久中日AB精品综合| 青草国产精品久久久久久| 人人妻人人爽人人澡av毛片| 日本成人高清一区二区三区 | 久久无码爆乳一区二区三区| 亚洲国产精品久久久久婷婷图片| 国产浪潮AV无码喷水| 国产国产精品人在线视| 欧美国产亚洲一区综合久久| 真实亲子乱一区二区| 四川少妇WBBBB搡BBBB嗓| 四虎永久在线精品884aa| 台湾帅男被深喉gv| 精品福利网站国产| 成年男女免费视频在线观看不卡| 一区二区三区精品在线| 中文字幕aⅴ人妻一区二区蜜桃| 久久中文字幕综合婷婷| 爱情岛亚洲论坛成人网站| 亚洲av禁18成人毛片一级在线| 一本一本久久α久久精品66| 四川少妇WBBBB搡BBBB嗓| 亚洲最大日韩中文字幕另类| 日韩办公室激情丝袜无码视频| 亚洲日韩在线视频| 2020欧美日韩国产系列| 国产成人免费无庶挡视频2O19| 伊人av综合网鸭子av| 女同另类之国产女同| 精品自拍偷拍日韩欧美| 国产精品高清99| 亚洲精品a久久久久久七| 一级特黄性色生活片免费| 人妻中文乱码在线网站| 国产国拍亚洲精品永久图片| 国产成人综合亚洲精品| 久久综合九色综合97婷婷女人| 一区二区三区黄色毛片| 热99re久久精品国产99热| 国产在线观看高清精品| 婷婷综合久久中文字幕蜜桃三电影 | 亚洲成在人网站天堂一区二区| 又黄又爽的视频在线观看网站| 亚洲精品自拍小视频在线| 中文字幕不卡高清视频在线| 中日韩美亚洲三级毛片| 亚洲人成网亚洲欧洲无码久久 | 国产欧美精品另类又又久久| AL无码在线观看高潮喷水| 亚洲欧美日韩在线网| 中文一区二区三区不卡视频| 中文字幕一区二区三区乱码| 色婷婷五月综合欧美图片| 天堂va欧美va亚洲va好看va| 国产精品一区二区四区| 国产精品一区二区在线观看| 亚洲日韩精品欧美一区二区| 亚洲综合日韩专区在线| 思思99久青草热精品免费观看| 亚洲欧美日韩综合一区在线| 中文毛片无遮挡高潮免费| 久久久精品亚洲一区二区| 成人国产精品秘片多多| 无码一区二区三区亚洲人妻| 欧美有码在线观看| 亚洲精品国产欧美一二区 | 伊人久久大香线蕉AV最新午夜 | 被黑人掹躁10次高潮| 亚洲人成无码网站久久99热国产| 国产偷V国产偷∨精品视频}| 无码不卡中文字幕AV| 国产精品久久久精品| 国产成人无码免费视频79| 国产精品一区二区免费播放视频| 999精品国产人妻无码梦乃爱华| 中文无码妇乱子伦视频| 九九av高潮ab无码av喷吹| 国产一级黄夜色AV| 免费无遮挡无码永久视频| AL无码在线观看高潮喷水| 亚洲成AV人片久久| 中文字幕乱妇无码AV在线| 蜜桃视频成人专区在线观看| 久久久久国产精品片区无码 | 国产一区在线免费观看视频| 亚洲最大中文字幕无码网站| 久久国产精品1区2区3区网页| 亚洲AAAAA特级| 在线播放亚洲国产一区二区三| 中文字幕无码一区二区免费| 午夜国产成人AV电影在线观看| 久久久久夜夜夜精品国产| 毛片无遮挡高清免费久久| 亚洲AV无码精品狠狠爱| 你懂的视频在线日韩| 亚洲精品国产精品制服丝袜| 人人干人人噪人人摸| 欧美精品日韩精品一卡| 国产亚洲精品bt天堂精选| 狠狠色噜噜狠狠狠狠色综合网| 免费的性开放网站交友网站| 一级特黄大片欧美久久久| 歐美另類在線觀看視頻網站| 一级爱做a视频免费观看| 人妻在线一区二区三区四区| 成在人线av无码免费看网站| 日本中文字幕成人在线视频| 日日碰狠狠丁香久燥| 欧美成人精品A片免费一区99| 国产福利在线永久视频| caoporon草棚在线视频147| 国产精品美女久久久久久久| 午夜亚洲国产理论片亚洲2020| 三级综合欧美中文| 高清一区高清二区视频| 无码毛片一区二区三区入口 | 亚洲av无码成h人动漫无遮挡不卡| 国产一区二区三区精品91| 亚洲欧洲中文字幕日产无码| 国产亚洲av天天夜夜无码专区| 中文国产成人精品久久一区| 最近中文字幕mv在线资源| 亚洲 日本 欧美在线观看| 国产精品一区二区在线观看| 久久露脸国语精品国产91| 日韩av中文字幕亚洲精品| 国产成人A精品国产欧美精品V| 亚洲欧洲日产国码无码久久99| 黄色大片国产在线| 成人亚洲欧美一区二区三区| 曰韩Av在线播放| 日韩精品久久久久久蜜桃| 亚洲av禁18成人毛片一级在线| 国产熟妇搡bbbb搡bbbb| 99RE热视频这里只精品4| 久久久久88色偷偷| 亚洲国产另类日韩| 亚洲旡码AV中文字幕| 午夜国产精品福利网站| 国产嘘嘘视频久久久国产盗摄| 色欲av无码无在线观看| 日本一区视频在线观看| 精品一区二区三区免费毛片爱| 另类姓老熟妇bbwbbw| 国产日韩厂亚洲字幕中文| 在线看的免费网站黄2018| 国产a黄色三级三级三级| 蜜臀av免费一区二区三区久久| 国产精品第51页26uuu| 亚洲日本va午夜中文字幕一区 | 2019国产精品视频| 午夜性色一区二区三区不卡视频| 亚洲国产精品欧美日韩一区二区 | 无码片在线观看视频| 四川少妇WBBBB搡BBBB嗓| 国产精品毛片更新无码| 嗯啊强上在线视频| 中文字幕综合av一区二区三区| 在线免费国产视频网站| 欧美亚洲国产不卡在线看| 国产三级不卡在线观看视频 | 亚洲午夜国产精品三级片| 国产又黄又a又潮娇喘视频| 欧美激情综合五月| 成人午夜无码一级在线播放蜜臀| 99精品视频在线观看15| 日韩特黄视频一区二区三区| 一本一道?Ⅴ无码中文字幕| 国产激情久久久久老熟女影院| 自在线看精品国产高| 国产一区二区三区欧美一区| 美女视频免费观看黄的国产 | 欧美视频在线看三区| 国产精品第一国产精品| 最新日韩毛片一区二区三区| 国产精品天干天干在线观蜜臀| 人妻少妇中文字幕乱码| 亚洲成A人V在线蜜臀| 美女福利视频一区| 亚洲国产成人av人片久久网站 | 精品一区二区三区成人精品| 精品乱色一区二区中文字幕 | 亚洲人成伊人成综合网久久久| 国产麻豆32部在线观看| 国产粗语刺激对白ⅩXX| 国产成人精品在线一区二区| 久久人妻无码aⅴ毛片花絮| 国产XXXX视频在线观看免费| 欧美成人AA大片| 人妻中文无码视频在线| 欧美大胆少妇BBW| 青青草无码精品伊人久久| 欧美日韩国产在线观看一区二区| 久久国产精品1区2区3区网页| 91av亚洲精品在线观看| 国内揄拍国内精品少妇| 精品国产精品乱码一区二区三区| 国产一二三四2024大象| 中文字幕高清免费不卡视频| 精品在久久免费线中文字幕| 久久无码爆乳一区二区三区| 天堂在/线资源中文在线| 国产成人无码VA在线观看| 色欧美与xxxxx| 99精品国产综合久久久久 | 亚洲国产精品乱码在线观看97| 久久亚洲SM情趣捆绑调教| oldvideo熟妇日本老太| 欧美一级免费视频| 国产色诱午夜免费视频| 中文字幕无码中文字幕有码| 福利姬在线喷水一区二区| 欧美日韩免费做爰大片人| 日韩精品视频在线观看午夜| 日韩一级无码性爱视频| 中文字幕大香视频蕉无码| 久久99国产精品成人欧美| 亚洲精品国产熟女久久久| 亚洲精品123区在线观看| 久久视频这里只精品| 99无码人妻一区二区三区免费| 亚洲欧美日韩精品成人| 国产99爱在线视频免费观看| 欧美性猛交xxxxx按摩欧美| 综合三区后入内射国产馆 | 亚洲另类无码专区首| 国产成人欧美日韩在线观看| 欧美日韩性黄三级| 97人妻无码免费专区| 亚州性无码不卡免费视频| 男人天堂网站在线| 伊人av综合网鸭子av| 亚洲国产日韩欧美综合| 亚洲色大成网站www成永久网站| 久久久一本精品99久久精品66直播 | 羞羞色院91精品永久站| 亚洲嫩模吧粉嫩粉嫩冒白浆| 日韩一级黄色毛片| 亚洲人妻中文手机版| 日本乱熟人妻精品中文字幕| av无码一区二区三区在线| 曰韩欧美国产中文字幕 | 色综合网天天综合色中文| 欧美日韩综合免费视频| 久久国产福利一区二区三区| 蜜芽尤物原创AV在线播放| 红杏国产成人精品视频| 黄页毛片网站大全在线免费观看| 国产又粗又硬又大又爽的视频| 更新亚洲国产福利午夜精品91视频免费日韩S一级 | 欧美成人精品高清在线观看初| 人妻少妇中文字幕乱码| 一级做性色a爱片久久片| 国内精品伊人久久久久777| 国产乱淫精品一区二区三区毛片 | 国产区精品一区二区不卡中文| 在线va无卡无码精品| 国产精品精品自在线拍| 玩弄丰满少妇人妻视频| 国产午夜高清一区二区不卡| 亚洲精品久久久久久| 在线新拍精品国产91| 久久精品女同亚洲女同| 久热精品一区二区| 国产成人一区二区不卡免费视频| 国产在线第一区二区三区| 电影网在线亚洲一区| 亚州中文字幕无码中文字幕| 久久久午夜成人噜噜噜| 免费观看的无遮挡AV| 无码不卡黄片一区| 久久无码国产日本欧美| 中文字幕综合av一区二区三区| 精品国产一区二区av片| AV狼友无码国产在线观看| 国产成人精品久久综合| 亚洲午夜性猛春交xxxx| 久久精品一区二区中文字幕日本| 成人天堂资源www在线| 熟女少妇内射日韩亚洲| 久久夏同学国产免费观看| 强壮公让我夜夜高潮a片视频| 国产xxxⅹ野性xxxxhd| 欧美人妻一区二区三区| 国产 一区二区三区 在线| 成人激情视频在线| 综合亚洲伊人午夜网| 成全视频观看免费高清| 国产女人18毛片水真多1| 欧美亚洲亚洲精品三区| 浪荡女天天不停挨CAO日常视频 | 99尹人香蕉国产免费天天| 亚洲天堂久久精品| 香蕉欧美大胸视频在线播放| 国产精品亚洲五月天高清| 久久国产精品一区二区视频| 国产人成无码不卡视频| 黑人与人妻无码中字视频| 亚洲综合在线视频小说图片 | 日美中文字幕在线播放| 给我免费播放片高清在线观看视频| 国产免费丝袜调教视频| 精品毛片久久一二三区| 欧美成人午夜剧场| 日韩精品久久久久久蜜桃| 亚洲重口啪啪一区| 一级特黄性色生活片免费| 成人欧美日韩一区二区三区 | 久久精品2020婷婷| 亚洲国产综合av剧情| 亚洲码欧美码一区二区三区| 亚洲va韩国va欧美va天堂| 日本无码观看一区二区三区| 日本无码电影一区二区在线观看 | 国产日韩亚洲欧美看国产视频| 中文字幕久怡春院| 成人毛视频在线免费观看| 亚洲人成伊人成综合网中文| 国产高清免费视频| 亚洲另类无码专区首| 精品一区二区三区国产在线| 99精品视频在线观看| 亚州第一页欧美日韩精品| 在线观看茄子视频APP| 一级黄片国产福利| 日韩国产中文字幕在线视频在线 | mm1313午夜福利视频观看 | 热99re久久精品国产99热| 欧美日韩国产综合视频二区| 超碰日本爆乳中文字幕| 青娱乐分类视频在线| 揭秘知花凛AV在线播放| 精品一区二区成人免费视频| 国产又粗又长免费视频| 亚洲人成一区二区不卡| 91麻豆欧美久久九色 | 久久人妻无码aⅴ毛片花絮| 精品三级综合少妇| 狠狠综合久久一区二区残暴| 欧美成人AA大片| 玩两个丰满老熟女| 青草国产在线视频| 精品视频一区二区三区艾草| 最近最新中文字幕免费的一页| 91精品在线费观看| 精品国产一区二区av片| 国产高清日韩欧美一区二区三区| 成人网站亚洲二区乱码| 国产成人综合怡春院精品| 亚洲无码一区视频了吗| 浪潮a∨无码在线| 亚洲AV无码专区春药在线观看| 人人妻人人爽人人澡av毛片| 乱伦中文无码免费| 国产AV无码专区亚洲AV高潮| 亚洲精品午夜精品| 国产精品美女久久久久久久| 少妇欧美激情一区二区三区内射| 久久精品国产自在一线| 青青青伊人色综合久久| 精品韩国亚洲AV无码一区二区三| 精品一区二区三区中文字幕在线| 99精品国产福久久久久久| 日本精品啪啪一区二区三区| 色综合网亚洲精品久久| 手机看片av无码免费午夜| 国产成人综合亚洲看大片| 亚洲欧美中文日韩v在线97 | 91精品国产国语对白视品| 国产精品视频免费播放| 久久久久夜夜夜精品国产| 欧美日韩在线永久免费播放| 午夜精品一区二区三区在线视| 国产偷2018在线观看97| 一区二区三区欧美日韩国产高清| 激情综合色五月六月婷婷| 国产精品爆乳奶水无码视频| 日本黄色爱爱视频网站| 精品国产sM免费AAA片| 国产av永久无码青青草原| 99精品又大又硬少妇毛片| 伊人久久综合精品无码AV专区国产AV成人精品播放 | 午夜精品一区二区三区三上悠亚 | 久久精品综合亚洲精品鲁鲁| 精品人妻久久久久区二区三区| 亚洲一区二区三区乱码| 久久综合五月天激情| 国产一女三男3p免费视频| 亚洲综合熟女久久久30P| 婷婷五月深爱憿情网六月综合| 在线看的免费网站黄2018| 一本大道在线无码一区| 亚洲A∨无码无线在线观看| 亚洲av大全一区二区三区| 久青草影院在线观看国产| 国产精品天干天干在线观蜜臀| 在线国产小时av| 在线观看91精品国产2021| 日韩精品一区二区中文在线观| 亚洲ⅤA中文字幕无码| 久久久久久人妻一区二区| 无码ⅴ久久亚洲熟妇无码| 国产99九九久久无码熟妇| 亚洲线精品久久一区二区三区| 国产成人久久久精品一区二区三区| 精品国产一区二区三区mp4 | GOGOGO高清免费播放| 亚洲国产综合av剧情| 日韩欧美亚洲中文乱码高清| 精品视频一区二区三区在线视频| 欧美日韩三级国产在线| 在线中文无码字幕| 天堂а√在线中文在线新版| 国产aⅴ无码久久丝袜美腿西西 | 亚洲av中文无码乱人伦| 国产精品天干天干在线观蜜臀| 中字幕一区二区三区乱码| 欧洲性开放老妇人| 精品一品国产午夜福利视频 | 久久频这里精品香蕉久久| 国产精品久久久久香蕉| 欧洲 亚洲 一区 二区| 91精品国产91久久久久| 亚洲综合熟女久久久30P| 欧美一区二区三区不卡高清视| 一区二区三区鲁丝不卡麻豆| 中文无码成人免费视频在线观看| 亚洲精品国产欧美一二区| 欧美肥胖老太videos另类| 丰满少妇猛烈进入A片88| 性做久久久久久久久一区二区 | 国产亚洲精品国产福利在线观看| 日本国产三级片免费观看| 少妇熟女天堂网AV| 久久九色综合九色99伊人| 噼里啪啦电影在线观看免费高清| 日本a一区二区三区大片| a级中文字幕视频在线播放| 天天日天天日天天射天天射| 国产亚洲精品线观看动态图| 亚洲国产成人黄色视频| 欧美日韩一区二区在线成人| 久久免费国产视频精品| 久热久爱免费精品视频在线| 无套进入内谢11P视频A片| av.三级黄色毛片在线观看| 国产精品无码免费视频二| 亚洲自偷精品视频自拍| 青草99久久九九久久久久| 国产香蕉97碰碰视频免费看| 日韩精品在线观看一区二区三区| 国产va免费不卡看片| 国产成人久久久精品二区三区| 东京热无码国产精品| 午夜视频在线瓜伦| 国产欧美一区二区三区日韩| 黄a在线网站福利高清| 精品愉拍自拍视频| 国产国产午夜福利视频在线观看| 人妻少妇久久中文字幕456| 久久国产超碰女女AV| 好疼啊好硬啊别视频| 精品人妻久久久久区二区三区| 国产污污网站一区二区三区| 日韩系列视频在线观看有码| 成年美女黄网站18禁| 国产一区二区三区麻豆| 亚洲一区在线日韩在线尤物| 成人免费观看黄a大片夜月国产| 一级做a爰片久久毛片了d| 89碰碰碰人妻无码免费看| 亚洲日韩欧美内射姐弟| 日本在线视频WWW色| 久久综合AV免费观看| 色偷偷AV亚洲男人的天堂| 国产成人无码VA在线观看| 欧美激情视频一区| 精品日韩在线一区二区三区| 51精品视频在线一区二区| 亚洲最大中文字幕无码网站| 久久伊人热精品老鸭窝| 国产专区一区二区三区免费| 国产一区二区三区自产| 日韩精品人成在线播放| 亚洲欧美丝袜精品久久中文字幕| 亚州一区二区三区久久AA| 日韩亚国产欧美三级| 免费观看国产精品视频大全| 色欲av无码无在线观看| 乱精乱人一区二区视频| 国产精品亚洲а∨天堂免| 国产精品18欠久久久久久| 青青草99久久精品国产综合| 999精品国产人妻无码梦乃爱华 | 成在线人免费视频一区二区| 国产精品精品国产免费电影| 欧美精品在线另类| 激情综合五月丁香五月激情| 2019国产精品视频| 亚洲成A∧人片在线播放黑人| 综合精品欧美日韩国产在线 | 久久婷婷五月综合| 国产成人精品免费午夜APP| 国产精品视频一区第二页| 亚洲欧美色中文字幕在线| 一区二区三区无码毛片真人| 国产精品高清99| SE01午夜精品无码| 亚洲熟妇无码AV在线播放| 国产人妖一区二区动漫黄片| 大地资源色婷婷视频在线| av网址在线免费观看得很| 欧美精品一区视频| 日韩av无码久久久精品免费| 视频一区二区欧美| 日韩精品欧美成人国产不卡| a国产一区二区免费入口| 青青草国产午夜精品| 中文字幕精品在线一区二区| 最近更新在线中文字幕一页| 日韩欧美视频免费在线观看| 国产一区二区三区在线看| 久草视频国产在线观看| 国产成人无码VA在线观看| 色一情一乱一交一二三区瑜伽 | 亚洲一区二区有限公司| 成人一区二区三区久久精品嫩草| 亚洲国产精品日韩AV不卡在线| 国产精日韩精品欧美精品不卡| 国产AV旡码专区亚洲AV| 伊人久久成人爱综合网| 欧美日韩一区精品在线| 亚洲另类日本久久久精品| 中文字幕亚洲精品无码| 三级高清亚洲精品| 色欲色香天天天综合网站免费| 人妻精品国产一区二区| 熟妇性hqmaturetube| 中文字幕久久国产精品综合| 玩弄大乳奶水中文字幕电影| 精品综合无码在线观看| 清纯唯美亚洲综合网| 精品久久久久久免费人妻| 国产曰批全过程免费视频好爽| 亚洲av永久无码天堂网| 免费专区一一色哟哟| 国产福利酱国产一区二区| 新版天堂资源在线| 欧美日韩国产大陆一区二区| 国产又粗又硬又大又爽的视频| 3d动漫精品啪啪一区二区下载 | 亚洲一区国产二区日本三区| 久久精品国产99国产精品亚洲| 欧美日韩国产不卡| 日本高清无卡码一区二区久久| 日本无遮挡色又黄的视频| 天天做天天爽中文777| 玩弄人妻少妇精品视频| 狠狠色伊人亚洲综合网站l | 国产精品拍在线天天更新| 777亚洲熟妇自拍无码区| 国产探花在线精品一区二区| 久久人妻无码毛片a片涩天使| 国产精品乱码不卡在线观看| 日韩少妇无码精品专区| 日韩欧美亚洲三级在线 | 亚洲精品久久一区二区三区777 | 老熟女洗澡maturepom| 2016国产高清日本一道| 亚洲爆乳少妇无码激情| 国产成人片AⅤ在线观看| 欧美老少妇最爽在线视频网站| ZOZ○Zo女人和另类Zoz0| 日韩精品电影亚洲一区| 亚洲日韩欧美一区二区三区| 欧美毛多水多黑寡妇| 国产精品WWW夜色视频| 老子影院午夜精品无码| 久久精品美女a v毛片| 久久精品人妻少妇一区二区三区| 无码日韩精品一区二区免费暖暖| 亚洲av禁18成人毛片一级在线| 日韩精品人成在线播放| 国产亚洲精品福利在线无卡一| 久久中文精品无码中文字幕下载| 精品国产av一区二区三区6| 美女大黄大色一级特级毛片| 国产一区二区三区免费久久久蜜臀 | 日本无码视频一区二区三区| 九九九热精品免费视频观看 | 无码视频一二三四区| 99精品视频在线观看| 中文字幕精品无码2021| 免费日韩一区二区三区免费视频| 国产成人精品一区二区三区在线| 在线观看国产黄片| 日韩精品99久久中文字幕| 深夜放纵内射少妇| 中文字幕一区二区三区乱码| 成人精品国产亚洲欧洲| 日韩高清每日更新在线| 国产人成无码不卡视频| 国产综合日本在线视频观看| 乱人伦中文视频在线| 国产中文在线亚洲精品官网| 亚洲国产精品欧美日韩一区二区| 午夜精品福利视频网站| 亚洲高清一区二区欧美 | 亚洲人成电影在线观看影院| 国产成人久久精品激情| 日韩在线观看一区二区三区四区 | 成在线人免费视频| 国产精品第17页| 精品久久久无码中文字幕边打电话| 精品国产3p一区二区三区| 国产又黄又免费aaaa视频 | 亚洲中文久久精品无码WW16| 亚洲av午夜精品一区二区三区| 国产精品videossex国产高清| 国产亚洲熟妇在线视频| 在线二区三国产中文字幕| 国产不卡一级内射视频在线观看| 亚洲成av人片在线观看| 久久久久久亚洲精品美女| 日韩av无码制服丝袜| 中文无码av片免费不卡| 日韩国产中文字幕在线视频在线| 无码h黄肉动漫在线观看| 高清一区高清二区视频| 成人一区二区三区久久精品嫩草| 亚洲av男人的天堂精品| 国产高清AV麻豆久久| 99久久国产综合精品女| 久久久中日AB精品综合| 国产精品99玖玖玖爱在线观看| 国产av无码一区二区三区18| 好男人看在线视频| 天堂а√在线中文在线新版| 久久精品亚洲乱码中文字幕最| 午夜精品成人一区二区| 欧美日韩亚洲一区二区内射| 国产成人精品久久一区二区| 久久久久国色AV免费观看性色| 亚洲欧美国产日韩综合| 精品久久久久久久久午夜福利| 国产乱码一二三区精品| 久久精品国产一区二区电影| 久久人妻无码aⅴ毛片花絮| 日产欧美国产日韩精品| 人妻精品久久久久中文字幕19 | 全免费又大粗又黄又爽少妇片 | 亚洲一精品一区二区三区天堂| 亚洲欧美日韩在线观看播放| 国产亚精品毛片ⅤA一区二区三区| 久亚洲AⅤ无码精品夜夜嗨| 亚洲午夜成激人情在线影院 | 成人亚洲欧美一区二区三区| 曰韩Av在线播放| 一级片好爽黄色视频| 久久久久99精品成人免费| 一二三区无码视频| 国产成人麻豆亚洲综合无码精品产 | 免费不卡无码av在线播放| 91国拍精品色嫩亚洲一区偷拍| 日韩精品久久久一区| 国产区精品一区二区不卡中文| 国产成人A精品国产欧美精品V| 亚洲国产精品乱码在线观看97| 不卡中文字幕中文无码| 久久久精品午夜免费不卡2| 好看中文字幕一区二区三区四区| 韩国日本亚洲免费| 成人亚洲精品久久久久软件| 日韩国产综合在线| 精品国产免费观看一区高清| 亚洲熟妇AV日韩熟妇AV| 亚洲日韩欧美中字另类| 一区二区三区无码毛片真人| 亚洲国产小视频在线观看| 久久亚洲SM情趣捆绑调教| 欧美午夜特黄AAAAAA片| 亚洲成AV人片在线观看无线| 国产在线播放日本| 久久国产精品二产精品| 欧美在线观看一区二区三区精品| 丁香五月色情婷婷在线观看| 亚洲精品国偷拍自产在线观看蜜臀 | 免费国产欧美国日产a| 国产乱老一区视频| 9999人体做爰大胆视频| 99r少妇极品熟妇人妻无码| 国产乱子伦视频三区| 国产乱子伦农村叉叉叉| 丁香五月综合缴情久久| 国产一区二区怡红院| 国产一区在线免费观看视频| 欧美精品欧美人与动人物牲| 精品一区二区三区成人精品| 2021久久国自产拍精品| 人妻少妇精品无码专区APP| 国产精品成人免费视频不卡| AV狼友无码国产在线观看| 无码国产精品一区二区免费久久| 国产精品一区二区av白| 国产三级国产精品国产普男人| 日韩资源福利网站免费观看一区| 国产女人爽到高潮a毛片| 亚洲国语在线视频手机在线| 国产一区二区三区精品91| 欧美一级激情在线观看| 婷婷五月深爱憿情网六月综合| 亚洲码欧美码一区二区三区| 免费黄色一级a毛片在线播放| 成人午夜久久成人亚洲| 一级黄片国产福利| 在线播放亚洲国产一区二区三 | 亚洲av中文无码字幕色最 | 在线a亚洲v天堂网2019无码| 亚洲欧美日韩国产三区| 国产三级不卡在线观看视频 | 野花香在线视频免费观看大全| 制服丝袜一区日韩| 亚洲中文字幕无码在线高清| 国产蜜芽尤物在线一区| 新版中文在线资源| 国产一级特黄高清免费看| 亚洲国产精品精华液999| 天天曰人人夜夜爽| 欧美人妻精品一区二区在线| 无码国产精品一区二区高潮 | 日韩视频在线第一页免费| 日韩精品极品视频在线观看免费| 亚洲午夜性猛春交xxxx| 日韩精品电影亚洲一区| 亚洲av成人片色在线观看| 国产99re在线观看只有精品| 丰满人妻无码∧V区视频| 色8噜噜噜噜久久婷婷| 亚洲精品性成人午夜剧场| а√中文在线资源库| 日韩精品视频在线观看视频| 日本免费一区二区三区毛片| 天天干天天操天天干| 国产精品无码一区二区三区高潮 | 天天爱天天做男人的天堂| 久久精品中文字幕麻豆发布| 亚洲精品一区二区三区新线路 | 国产一区二区怡红院| 亚洲国产福利一区二区三区| 第一区二区三区福利视频| 国产av一区二区三区狼人香蕉| 一个人看WWW在线视频| 国产黄色视频在线观看www.| 精品一区二区三区四区五区高 | 久久影视这里只有精品国产| 中文字幕久久精品有码综合网| 999精品国产人妻无码梦乃爱华 | 夜夜爽妓女8888888视频| 欧美国产伦久久久久| 亚洲国产精品一区,二区,三区| 成人美女视频一区二区三区| 国产又黄又a又潮娇喘视频| 日本α级一区二区在线免费观看 | 亚洲天堂2014| 毛片基地a久久国产精品| 日本高清在线观看WWW色| 国产青榴视频在线观看| 精品久久一区二区乱码| 天天曰人人夜夜爽| 精品国产仑片一区二区三区| 国产精品无码免费视频二| 欧美日韩另类国产一区二区三区| 久久久久亚洲精品天堂| 欧美综合中文字幕久久99| 国产超碰人人做人人爱ⅴa| 亚洲综合熟女久久久40P| 无码人妻精品一区二区三区久久 | av一级不卡手机在线观看| 日本无码观看一区二区三区| 国内精品伊人久久久久777| 日韩资源福利网站免费观看一区| 久久精品国产精品亚洲丝| 无码丰满少妇2在线观看| AV在线一区二区精品| 欧美精品激情一区二区…| 无码人妻一区二区三区兔费| wc女厕撒尿七ⅴ偷拍| 婷婷综合久久狠狠色成人网| 一出一进一爽一粗一大视频免费的| 亚洲妇女黄色高潮视频| 欧美激情综合五月| 国精产品一区一区三区有限| 乱人伦中文视频在线| 无人视频在线观看播放免费| 国产不卡中文字幕在线电影| 人人妻人人爽人人澡av毛片 | 污污视频软件免费| 国产亚洲女人久久久毛片| 在线视频免费观看WWW动漫| 久久99国产精一区二区三区| 强行18分钟处破痛哭AV| 六十路熟妇高熟无码av种子| 亚洲日韩AV无码一区二区三区人 | 国产精品美女久久久网av| 天堂资源在线WWW中文| 国产精品欧美久久二区66| 新版中文在线资源| 国产精品人妻无码久久久郑州| 人人妻人人爽人人澡av毛片| 亚洲熟妇AV日韩熟妇AV| 久久久久久久成人午夜精品福利 | 亚洲人成伊人成综合网中文| 午夜福利在线欧美激情| 国产精品乱码在线观看| 妺七AV导航福利| 一个人看的在线www视频| 又黄又爽一区二区免费看| 欧美日韩有精品一区二区三区 | 伦伦影院精品一区| 国产成人综合野草| 一级一区二区在免费线观看| 国产伦精品一区二区三区| 日韩精品无码专区免费播放| 国产精品女久久久一区二区| 深夜放纵内射少妇| 亚洲无码免费观看黄色| 亚洲精品久久久中文字幕痴女| 一本久道综合久久精品| 久久国产精品99久久小说| 亚洲欧洲日韩国产一区二区三区 | 51国产偷自视频区免费播放| 日韩高清每日更新在线| 日本精品中文一区二区三区 | 久久久99精品免费观看| 国产精品毛片一区久久久| 国产免费不卡视频在线高清| 一级a爱做片免费观看国产| 新版天堂资源在线| 国产日韩欧美一区二区三区综合| 亚洲AV无码精品狠狠爱| 青草伊人久久综在合线亚洲| 精品国产女人久久久久| 国产精品白浆无码流出| 日本免费播放视频乱码伦| 被灌满精子的波多野结衣| 成人午夜久久国产18公司| 亚洲欧美日韩综久久久九| 精品人妻中文无码AV在线| 久久久精品午夜免费不卡2| 亚洲日本欧美日韩中文字幕| 久久亚洲网站视频| 狠狠色噜噜狠狠狠狠97首创麻豆| 国产呦福利呦交欧美一区| 不卡一区二区三区高清在线| 亚洲日韩欧美内射姐弟| 欧洲亚洲韩国日本国产精品| 亚洲久综合在线导航| 欧美日韩国产综合精品| 国产亚洲另类无码专区国语 | 蜜桃臀无码内射一区二区| 国产成人涩涩屋视频在线观看| 中文人妻熟妇乱又伦精品| 国内精品伊人久久久久777| 亚洲欧美日韩综合一区在线 | 久久久久夜夜夜精品国产| 中文字幕精品亚洲一区| 久久精品中文字幕一区| 亚洲国产精品欧美日韩一区二区 | 欧美日韩加勒比精品一区| 国产高潮流白浆网站| 18禁无码网站天天看| AL无码在线观看高潮喷水| 人人超碰91尤物精品国产| 男人用嘴添女人下身免费视频| 不卡一区二区三区福利视频| 国产中文一级特黄aa大片| 国产亚洲精品国产福利久久| 69av在线播放| 欧美日韩国产成人aⅴ| 国产福利一区二区三区在线观看| 国产欧美日韩一区二区精品| 亚洲一区二区中文| 国产免费久久精品99久久| 三级黄片无码视频| 国产精品一级视频香蕉| 蜜芽尤物原创AV在线播放| 国产欧美日韩区一区二| 蕾丝av无码专区在线观看| 89碰碰碰人妻无码免费看| 国产综合亚洲日韩| 噜噜噜亚洲色成人网站| 成人欧美一区二区三区| 久久天天躁狠狠躁夜夜av| 免费只有精品久久久久国产综合精品 | 国产午夜片无码区在线播放| 亚洲欧美丝袜精品久久中文字幕| 人妻换人妻A片爽麻豆| igao国产视频| 一区二区三区免费不卡视频| 在线高清国产天堂| 国产精品h在线观看| 尤物精品国产第一福利网站| 亚洲AAAAA特级| 国产特级毛片精品视频| 欧美线人一区二区三区| 国产偷V国产偷∨精品视频} | 97av麻豆蜜桃一区二区| 国精产品一区一区三区有限| 日本熟妇人妻XXXXX| 激情内射亚洲一区二区三区| 中国XXXXXL196_MAY18_| 国产91色综合久久免费分享| 久久狠狠中文字幕2017| 国产高跟鞋丝袜在线播放| 天天爽天天爽天天爽| 久久久精品国产免大香伊| 欧美三级手机不卡在线观看| 国产性色av免费观看在线| 免费啪视频1000部在线观看| 国产精品拍在线天天更新| 国产永久免费观看黄网站| 欧美国产另类在线制服丝袜| 成人羞羞视频国产| 亚洲爱爱无码专区| 国产探花在线精品一区二区| 五级黄色一区二区观看网站| 久久天天躁狠狠躁夜夜av| 黑人巨大精品欧美| 中文毛片无遮挡高潮免费| 欧美一区二区精品在线视频| 国产成人AV电影在线观看第一页| 亚洲精品无码久久毛片99| 2024中文字幕一区二区三区| 精品三级综合少妇| 国产熟妇搡bbbb搡bbbb| 色婷婷一区二区三区四区成人网| 成人激情视频在线| AV无码精品一区二区三区宅噜噜| 国产激情综合五月久久 | 精品国产一区二区三区四区阿崩| 亚洲午夜一区二区三区四区五区 | 国产乱子伦在线一区二区| 美日韩精品无码?v专区久久久| 99国产第一页在线| 思思99热久久精品在线6| 热99re久久精品国产99热| 亚洲精品国产av成人| 精品无码国产av一区二区| 一级做a爱视频免费观看| 国产成人片AⅤ在线观看| 亚洲国产精品欧美日韩一区二区| 国产在线精品一区二区三区在线 | 国产亚洲精品久久精品6| 天天爱天天做男人的天堂| 欧美日韩亚洲一区二区内射| 丰满的少妇XXXXX人| 国产欧美在线亚洲一区| 国产人妻精品一区二区三水牛影视 | 午夜精品福利视频网站| 亚洲av日韩av制服丝袜第一页| 亚洲精品中文字幕乱码三区一二| 韩国日本亚洲免费| 99久久婷婷国产综合亚洲| 国产精品成人网在线观看 | 亚洲成在人线av品善网好看| 自在线看精品国产高| 2021国产高清免费V无码| 国产激情久久久久老熟女影院| 久久大香伊蕉在人线观看热| 美女的胸又黄又www网站| 91精品人妻一区二区三| 999精品国产人妻无码梦乃爱华| 日韩欧美亚洲一区SWAG| 无码人妻精品一区二区三区东京热| 一级爽爽爽影院毛片体验区| 国产亚洲三级片网站| 国产精品人妻无码免费久久久 | 五月丁香婷婷天堂| 国产精品青草久久久久福利99| 成人国产精品免费观看视频| 欧美国产日韩一区二区三区四区| 激情啪啪视频国产免费| 欧美一区在线黑人大吊| 久久精品中文字幕麻豆发布| 国产亚洲精品视频人人| 国产精品一级视频香蕉| 国产放荡对白视频在线观看 | 久久人妻无码aⅴ毛片花絮| 亚洲欧美日韩一区二区三区在线 | 韩国青草无码自慰直播专区| 777亚洲熟妇自拍无码区| 国产一级黄夜色AV| 久久久精品国产免大香伊| 老王亚洲福利在线观看| 91麻豆欧美久久九色| 韩国日本免费不卡钱在线看| 无码aⅴ精品日本无码久久 | 激情五月色综合国产精品| 欧美日韩免费做爰大片人| 蜜桃视频APP下载网站| 一个人看WWW在线视频| 欧美人妻一区二区三区| 久久噜噜噜精品国产亚洲综合| 国产亚洲精品影达达兔| 日本免费一区二区三区毛片| 狠狠躁夜夜躁无码中文字幕| 免费中文无码AV动作片| 日韩精品不卡视频| 久久久久无码精品国产不卡| 国产日韩欧美高清在线一区| 欧美日韩中文高清| 精品愉拍自拍视频| 中文资源在线官网| 精品超碰精品无码免费| 日本精品一区二区不卡免费 | 欧美日韩中文字幕综合| 97精品国产一二三产区| 熟女少妇内射日韩亚洲| 精品国产乱子伦一区| 成人国产精品视频一区二区| 无码任你躁x7x7x7x7在线观看| 精品视频无码一区二区三区| 韩国无码av片在线电影网站| 精品一区二区三区四区毛片费| 精品一区中文字幕一区二区三区| 国产精品100页| 欧美视频在线看三区| 久久综合电影一区| 国产亚洲精品AA片在线观看| 亚洲自偷精品视频自拍| 人妻少妇久久中文字幕456| 国产日韩丝袜美女视频网站| 国精品人妻无码一区二区三区喝尿 | 精品成人无码中文字幕不卡| 老牛精品亚洲成AV人片| 欧美成人一卡二卡三卡| 在线亚洲精品国产二区图片欧美 | 国产亚洲一区二区三区视频网站| 久久丁香五月天综合网| 欧美在线观看www| 亚洲欧美日韩国产中文字幕免费看片视频软件| 欧洲亚洲成人一区二区三区| 欧美性猛交xxxx乱大交丰满| 五月国产综合视频在线观看| 欧美国产日韩在线视频| 国产精品特级毛片一区二区三区| 亚洲精品无码永久在线观看性色| 人人妻一区二区三区| 亚洲成网99久久久精品| 97久久超碰精品视觉盛宴| 亚洲国产成人无码网站大全| 国产精品人妻无码免费久久久 | 国产aⅴ精品一区二区久久 | 熟女高潮一区二区三区69av| 中文乱码字幕国产中文乱码 | 中文字幕乱码人妻| ?级毛片久久免费观看| 欧美激情综合五月| 国产激情无码一区二区| 国产精品_国产精品_K频道| 久久亚洲中文字幕精品一区| 精品h无遮挡在线看| 国产欧美精品另类又又久久| 欧美精品人爱欧美精品| 91久久青草精品38国产| 一区二区三区国产在线播放| 国产福利在线永久视频| 色欲香天天综合网站| 欧美三级手机不卡在线观看| 综合加勒比日韩欧美在线视频 | 国产亚洲精品线观看| 成人综合激情在线| 国产成人高清亚洲一区| 国产欧美一区二区三区日韩| 国产日韩丝袜美女视频网站| 国产成人用品经典三级| 亚洲精品第一国产综合精品| 亚洲精品成人无码中文毛片不卡| 日韩精品中文字幕第一区| 性猛交╳XXX乱大交| 你懂的视频在线日韩| 玩弄人妻少妇精品视频| 最近高清中文在线字幕观看6 | 无码国产精品一区二区高潮| 在线无码va中文字幕无码| 国产成人一区二区三区免费3p| 在线观看欧美一区二区三区| 亚洲国产欧美婷婷| 国产一级精品一区二区三区| 乱人伦人妻中文字幕不卡| 免费特黄一级欧美大片| 亚洲一精品一区二区三区天堂 | 久久精品国产一区二区三区| 日美中文字幕在线播放| 色情久久久AV熟女人妻网站| 日本高清无卡码一区二区久久| 国产婷婷精品成人一区二区三区 | 亚洲熟妇真实自拍另类| 中文字幕欧美三级精品| 亚洲av无码成h人动漫在线观看| 久久亚洲中文字幕精品一区| 亚洲精品国偷拍自产在线观看蜜臀| 真实国产乱人伦在线视频播放| 欧美日韩另类国产一区二区三区| 国产成人涩涩屋视频在线观看| 国产成人精品久久综合| 亚洲一区二区有限公司| 精品国产乱子伦一区| 久久99亚洲精品久久频| 国产叫闺蜜一起在线播放| 噜噜噜亚洲色成人网站| 中文字幕无线观看中文字幕| 天天摸夜夜添夜夜无码| 中文字幕大香视频蕉无码| 免费99精品国产自在在线| 久热久爱免费精品视频在线| 亚洲乱码精品久久久久..| 爆乳视频一区二区三区四区| 国产卡1卡2卡3仙踪林老狼| 国产精品天干天干在线观蜜臀| 精品国产乱码久久久绯色| 亚洲gv网址在线| 2018久久精品免费视频| 久久久亚洲欧洲日产无码AV| 中文字幕人妻精品一区二区| 久久久久aⅤ无码免费网| 亚洲成人日本高清| 国产精品国内免费一区二区三区| 女BBBB槡BBBB槡BBBB| 高清国语自产精品视频二区在| 国产精品免费观看黄片| 国产熟女高潮视频| 天堂а√在线中文在线新版| 精品一区二区三区无码av孕妇 | 国产成人无码AⅤ片在线观看| 亚洲av三级影片久久久| 农民人伦一区二区三区| 国产大学生三级在线视频| 无码精品日韩网站视频| 丰满岳妇乱一区二区三区| 亚洲最新无码成AV人| 波多野结衣AV高潮在线看| 久久人妻无码aⅴ毛片花絮| 亚洲一区二区三区av在线无码| 搡BBBB推BBBB推BBBB| 亚洲另类无码一区二区三区| 9i看片成人免费视频| 午夜欧美精品久久久| 国产精品天干天干在线观蜜臀| 中文有码日本高清在线视频| 精品国产aⅴ无码一区二区| 国产乱子经典视频在线观看| 日本欧美不卡二区在线| 欧美亚洲国产精品一区二区| 不卡视频精品在线免费观看| 18禁真人抽搐一进一出免费| 国产精一品亚洲二区在线播放 | 久久亚洲国产成人精品无码一区| 2021国产高清免费V无码| 日韩精品久久久久久蜜桃| 国产91色综合久久免费分享| 精品无码一区二区三区爱欲88| 亚洲精品中文字幕久久久久| 2016国产高清日本一道| 国内精337P日本大胆欧美人视频| 国产精品美女一区二区三区| 精品人成视频免费国产| 亚洲欧美日韩高清综合678| 国产精品露脸国语对白| 亚洲精品自产拍在线观看亚瑟| 亚洲欧美日韩综久久久九| 日韩 欧美在线观看一区二区| 国产亚洲精品久久久999苍井空 | 亚洲国产欧美婷婷| 国产91l在线播放| 国产日韩欧美在线不卡精品| 国产在线第一区二区三区| 99久久精品国产一区二区三| 偷拍视频一区二区三区| 旧里番亚洲国产一区| 久久久AV波多野一区二区| 亚洲AV无码成人品爱| 欧美浓毛系列nnuu22| 性做爰A片欧美激情艳妇20P| 久久久久久一级成人毛片| 亚洲精品女人成人久久久| oldvideo熟妇日本老太| 韩国视频资源一区二区三区| 久久综合日韩亚洲精品色| 美女任你摸毛片av免费| 国产h片在线免费观看视频| 色视频一区二区三区国色| 国产av无码一区二区三区18| 亚洲日韩精品av成人波多野 | 国产精品一区二区三区久久| 久久成人国产精品免费| 欧美日韩另类国产在线观看| 国产精品美女一区二区三区| 日韩中文乱码人妻出轨| 欧美日韩免费观看视频网站 | 亚洲一精品一区二区三区天堂| 日韩精品片第7页免费观看网站| 自拍大香蕉一区二区三区 | 啪啪无码人妻丰满熟妇| 丁香婷婷视频在线播放| 久久人妻无码aⅴ毛片花絮| 精品国产sM免费AAA片| 欧美午夜精品一区二区蜜桃_| 国产一二三区韩国女主播 | 国产成人一区=区| 欧美午夜精品一区二区蜜桃_| 日本中文字幕乱码八a∨| 欧美亚洲黄片大全| 国产成人高清亚洲一区| 影视大全在线观看| 黄色大片国产在线| 国产成人乱色伦区| 国产在线播放一区二区| 免费精品国自产拍在线不卡| 久久青草精品欧美日韩精品| 中文字幕在线精品无码一区| 亚洲精品久久久久久动漫| 色一情一乱一交一二三区瑜伽| 亚洲日韩精品欧美一区二区| 亚洲高清国产拍精品熟女| 污污的网站在线观看免费| 欧美久久大香线蕉无码| 亚洲另类无码专区首| 久久国产精品最新一区| 欧美日韩亚洲综合另类ac| 成人区精品一区二区毛片不卡| 欧美在线观看www| 精品国产仑片一区二区三区| 午夜福利a 级在线| 国产 一区二区三区 在线| 辜莞允+无码+视频下载| 黑人与人妻无码中文视频| 人妻丰满熟妇无码区| 91成人在线观看免费| 国产精自产拍久久久久久蜜| 欧美成人AA大片| 毛片一区二区三区无码| 青青草99久久精品国产综合| 免费午夜网站在线观看十八禁| 亚洲人成人无码WWW影院| 久热久爱免费精品视频在线| 成人免费无码AV| 国产片无码日韩精品| 国产特黄大片aaa在线全集观看| mm1313午夜福利视频观看| 高清一区二区三区视频不卡| 亚洲天堂成人在线免费网站| 亚洲精品成人无码中文毛片不卡| 无码h黄肉动漫在线观看| 国产免费mv大片人人电影播放器| 精品人妻久久久久区二区三区| 亚洲夜夜欢A∨一区二区三区| 最新免费中文字幕一区二区视频| 精品国产一区二区av片| 亚洲精品成人无码中文毛片不卡| 婷婷综合久久中文字幕| 在教室伦流澡到高潮HBL原神| 大地资源色婷婷视频在线| 在线免费观看电影| 少妇精品毛片久久久| 亚洲旡码AV中文字幕| 欧美三级在线播放| 亚洲国产理论片在线播放| 辜莞允+无码+视频下载| 国产伦久视频免费观看视频 | 人妻无码AⅤ中文字幕日韩| 国产精品久久久亚洲| 国产精品久久人妻无码网站一区| 国产婷婷精品成人一区二区三区| 欧美日韩性黄三级| 精品一区二区无码| 国产黄色视频三级毛片| 老男人久久青草AV高清| 亚洲熟妇丰满XXXXX| 亚洲Av无码专区国产乱码在线| 中文字幕人妻熟女AV| 欧美丰满熟妇xxxx性| 无码粉嫩虎白一线天在线观看| 日韩系列视频在线观看有码| 内射中出日韩无国产剧情| 国产情侣作爱视频免费观看| 久久精品无码精品免费专区| 国产成人拍拍拍高潮尖叫| 麻豆国产vā免费精品高清在线| 婷婷综合久久狠狠色成人网| 国产日韩AV在线播放| 国产成人无码一二三区视频| 亚洲人成电影网站| 中文字幕无线码免费人妻| 国内丰满少妇一a级毛片视频| 人妻少妇精品一区三区久久| 中文字幕在线无码一区二区三区| 男女性杂交内射女bbwxz| 国产欧美日韩区一区二| 国产啊v在线看免费播放| 精品一区二区三区国产区| 清纯唯美亚洲综合网| av无码毛片久久喷潮水| 亚洲处破女AV日韩精品波波网| 久久国产精品成人免费秋霞| 亚洲ⅤA中文字幕无码| 国产曰批全过程免费视频好爽| 亚洲国产另类日韩| 亚洲欧洲日产无码av网站| 亚洲日韩欧美婷婷综合久久| 无码一区二区三区四区久久久| 国产三级日产三级40岁| 久久精品免视看国产成人| 欧美日韩视频一区三区二区在线观看 | 人人添人人妻人人爽夜欢视av| 亚洲国产精品欧美日韩一区二区| 卡一卡二卡三精品免费人口| 欧美午夜精品一区二区蜜桃_| 国产精品自在拍首页视频| 亚洲国产精品人久久电影| 精品人妻一区二区三区不卡| 久章草在线无码视频观看| 99精品久久只有精品| 激情不卡 一区二区三区| 亚洲人成无码网国产软件| 日韩一级毛一欧美级a免费| 国产亚洲精品久久777777美腿| 亚洲中文无码AV永久主页| 国产亚洲精品视频人人| 欧美五十路熟女一区二区三区| 日本一区二区三区国产欧美| 欧美日韩一区二区三区内射| 2021国产成人综合亚洲精品| 在线免费感情无码不卡尤物| 亚洲无遮挡一级毛片| 深爱激动情一区二区三区| 国产成人av大片在线午夜| 久久精品中文字幕久久| 国产精品视频免费观看调教网| 无码国产高潮一区二区| 国产成人综合网在线播放| 女人18毛片国产第一次| 精品久久久久久久无码人妻热| 91精品国产99久久9a级| 国产婷婷久久久久久| 久久久久久国产精品三级| 欧美成人免费看片一区| 亚洲日本一区二区久久久精品| 午夜视频在线瓜伦| 美女裸体自慰在线观看| 99精品久久精品一区二区| 夜夜爽日日澡人人添蜜臀| 97婷婷狠狠成为人免费视频| 日韩精品极品视频在线观看免费| 中文字幕第1页先锋影音| 国产欧美日韩一区二区国产精品专区 | 人妻被粗大猛进猛出69国产| 国产爆乳无码视频在线观看| 国产成人久久精品流白浆| 欧美激情在线观看一区二区三区 | 夜晚玩弄亲女小妍h文公交车| JZZIJZZIJ在线观看亚洲熟妇| 免费精品久久久久久成人av| 亚洲日本中文字幕乱码在线| 人人干人人噪人人摸| 午夜热播电影院动作电影免费观看完整版视频 | 美女内射无套日韩免费播放| 国产精品久久久精品| 国产精品欧美日韩激情在线| 亚洲国产精品va在线观看麻豆 | 狠狠综合久久久久尤物| 国产精品无码免费视频二| 疯狂做爰xxxⅹ高潮潮喷小兰花| 69精品丰满人妻无码视频A片 | 丰满人妻无码∧V区视频| 果冻传媒国产区二期| 精品一区二区无码| 亚洲成AV人影片在线观看| 婷婷射精AV这里只有精品| 蜜臀av免费一区二区三区久久| 亚洲天堂久久资源| 老熟女洗澡maturepom| 亚洲综合色成在线播放| 国产女主播福利一区二区| 久久久AV波多野一区二区| 中文在线а√在线| 欧美精品亚洲精品日韩传电影| 婷婷国产亚洲性色av网站| 亚洲天堂成人在线免费网站| 蜜臀久久99精品久久久久久小说| av一区二区三区在线看片 | 国产婷婷精品成人一区二区三区| 久久精品中文字幕一区| 中文字幕高清免费不卡视频| 在线播放亚洲国产一区二区三| 五月婷婷综合视频在线观看| 国产精品观看在线| 日韩亚洲欧美在线com| 日本a一区二区三区大片| 免费只有精品久久久久国产综合精品| 亚洲精品乱码久久久久99| 黄色av日韩中文字幕| 欧美精品久久天天躁免费观看 | 国产九九热这里只有精品| 久久精品国产亚洲av成人观看| 久久精品国产亚洲av麻豆影院| 香蕉视频在线观看一区二区 | 玉瑶公主高h喷汁呻吟| 婷婷综合久久狠狠色成人网| 日韩欧美亚洲一区SWAG| 91九色精品无码片一区二区三区| 久久精品熟妇爽死你| 亚洲人妻中文手机版| 亚洲国产综合性网站| 久久久一本精品99久久精品66直播| 国语精品福利一区二区久久| 国产精品九九九久久九九| 一区二区三区无码毛片| 午夜精选在线观看| 久久人人爽人人爽人人爽| 国产在线aaa片一区二区99| caoporn国产精品免费视频| 日本一区二区三区福利视频| 免费国产美女黄网站| 国产精品18欠久久久久久| 精品视频一区二区三区艾草| 妺七AV导航福利| 国产亚洲精品第一综合另类| 日本中文字幕乱码八a∨| 2024中文字幕一区二区三区| 乱伦中文无码免费| 精品专区一区二区三区在线观看| 国产性色av免费观看在线 | 韩国精品一区二区三区无码视频 | 亚洲a∨永久综合在线观看尤物| 欧美日韩国产人妖色视频| 韩国无码av片在线电影网站| 日本亚洲中文字幕不卡| 国产精品亚洲а∨无码播放| 污污视频软件免费| 老熟女高潮一区二区三区1| 一出一进一爽一粗一大视频免费的| 黄色午夜欧美视频| 国产高跟鞋丝袜在线播放| 日本欧美国产三级精品电影| 欧美激情肉欲高潮视频| 久久国产综合精品| 国产免费小黄片视频| 国产av一区二区三区狼人香蕉| 99精品又大又硬少妇毛片| 亚洲一区二区有限公司| 精品AV无码国产一区二区| 不卡精品xxx在线观看| 欧美亚洲另类AⅤ图一区二区| 日本一区二区资源在线观看| 国产成人无码AⅤ片在线观看| 午夜热播电影院动作电影免费观看完整版视频| 中文字幕高清免费不卡视频| 久久人人爽人人爽人人AV东京热 | 欧美日韩综合一区二区三区| 无码片在线观看视频| av国内精品久久久久影院| 黑人与人妻无码中字视频| 免费在线观看黄色AV| 69亚洲日本va中文字幕婷婷| 人妻的ⅤA无码视频| 亚洲日韩AV无码一区二区三区人| 日韩另类动漫一区二区| 国产成人无码AV在线播放不卡| 亚洲综合色成人久久精品视频精品视频 | 日韩人妻无码免费视频一二区| 久久精品女人天堂A片生理期| 天堂va欧美va亚洲va好看va| 亚洲重口啪啪一区| 国产啊v在线看免费播放| 毛片久久网站五月丁香| 久久国产亚洲av无码麻豆| 92国产精品午夜福利免费 | 国产成人亚洲综合无码精品| 欧美精品激情一区二区…| 国产99爱在线视频免费观看| 中文无码成人免费视频在线观看 | 国产亚洲精品AA片在线观看| 国内揄拍国内精品少妇| 日韩国产女人久久久| 欧美日韩国产第一页精品| 国产高清一区二区| 青草99久久九九久久久久| 另类姓老熟妇bbwbbw| 日本无码电影一区二区在线观看| 精品国产18禁99久久久久久| 99高清国产自产拍| 人妻人人做人做人人爱| 久久东京热这里只有精品视频| 国产免费牛牛视频手机版| 国产欧美日韩一区二区一| 日韩不卡1卡2卡三卡网站| 亚洲欧美日韩高清综合678 | 91欧美激情一区二区成人| 麻豆短视频在线观看| 欧美日韩另类国产一区二区三区| 人妻秘书AV一区二区| 无码AV蜜臀AⅤ色欲在线观看| 国产精品无码永久在线观看| 成人亚洲A片V一区二区三区婷婷| 亚洲乱码精品久久久久..| 人人妻人人玩人人澡人人爽| 国产情侣一区二区| 嗯,啊啊免费视频| 欧美一区二区三区婷婷五月| 欧美日韩综合免费视频| 亚洲日韩精品av成人波多野| 国产国产午夜福利视频在线观看| 国产偷国产偷亚洲清高| 成人免费观看黄a大片夜月国产 | 狠狠躁夜夜躁人人躁婷婷| 免费一区二区无码av| 国产成人精品午夜2022| 99大香伊乱码一区二区| 亚洲最新无码成AV人| 欧美浓毛系列nnuu22| 亚洲综合熟女久久久40P| 亚洲国产综合性网站| 男女一边做一边爽免费视频| 国产精品夜夜嗨av| 中文天堂网www新版资源在线| 精品无码一区二区三区av| 久久中文精品无码中文字幕下载 | 国产一级二级精品毛片| 欧美亚洲另类在线日韩国产| 综合欧美精品国产| 亚洲国产综合99久久久精品| 久久天天躁狠狠躁夜夜2020老熟妇 | 国产精品黄片AV| 国产av一区二区三区狼人香蕉| 美女视频一区二区三区三州| 日韩国产中文字幕在线视频在线| 亚洲精品国产乱码久久久1区| 黄色av日韩中文字幕| 国产做a爰片久久毛片a片蜜臀| 午夜伦伦影院无码| 欧美有码在线观看| 欧美亚洲国产一区二区三区| 亚洲无码一区视频了吗| 机机对机机手机免费下载版大全 | 国产乱妇乱子在线播视频播放网站| 亚洲av日韩av无码a一区二区三区| 国产av性色av一区二区| 国产国产综合久久久久鬼色| 999精品国产人妻无码梦乃爱华 | 人妻系列av无码专区免费| 欧美性猛交xxxx乱大交丰满 | 综合精品欧美日韩国产在线| 久久精品久久精品国产大片| 榴莲网站在线观看| 国产精品不卡无毒在线观看| 91极品尤物在线观看播放| 好男人看在线视频| 国产亚洲A∨片在线观看| 人妻熟妇无码一二三区视频| 久久免费黄色精品| 色欲色香天天天综合网站免费| 91成人在线观看免费| 国产亚洲一区二区久久| 国产日韩视频一区二区三区| 国产精品中文字幕久久| 日韩欧美伊人久久大香线蕉| 一区二区三区欧美| 亚洲日韩在线观看免费视频| 欧美亚洲午夜精品福利| igao国产视频| 精品国产av一区二区三区6| 中文字幕无码视频在线一区| 国产亚洲欧洲av综合一区二区三区 | 国产精品成人99久久久| 欧美国产日韩一级片| 欧美成人综合久久精品| 波多野结衣高潮av在线播放| 亚洲精品国产欧美一二区| 欧美综合自拍亚洲综合网| 丝袜黄色片精品国产一区二区| 亚洲av综合久久无| 美日韩精品无码?v专区久久久| 亚洲国产精品区一区二区三区| 午夜三级a三级三点在线观看| 91麻豆欧美久久九色| 一二三区无码视频| 亚洲午夜久久久久| 国产强伦姧人妻毛片| 亚洲高清国产拍精品熟女| 女avwww无套白浆流出| 最新国产精品拍自在线观看 | 伊人精品成人久久综合全集观看| 国产亚洲精品久久久999苍井空 | 亚洲熟妇丰满XXXXX| 国内精品视频一区二区三区八戒 | 久久久精品国产av麻豆| 丁香五月色情婷婷在线观看| 亚洲av片免费在线观看| 久久精品亚洲欧美日韩久久| 久久午夜无码鲁丝片午夜精品特黄无码| 在线精品亚洲观看不卡欧| 人人妻人人澡人人爽曰本| 国产乱妇乱子在线播视频播放网站| 97se狠狠狠狼鲁亚洲综合网| 亚洲人成人77777在线播放| 国产精品欧美一区二区三区激情| 国产精品麻豆美女在线| 国产在线精品一区二区不卡麻豆| 自在线看精品国产高| 国产又色又爽又黄的| 中文字幕无码视频在线一区| 好久被狂躁A片视频无码免费视频| 51国产偷自视频区免费播放| 欧美日韩中文字幕综合| 国产ts系列紫苑吊带网袜| 在线观看免费人做人爱视频| 自拍偷自拍亚洲精品第1页| 中文字幕无码人妻AAA片| 久久伊人五月天婷婷| 国产免费观看久久黄av片| 欧美在线观看一区二区三区精品| 韩国日本免费不卡钱在线看| 欧美三级日韩综合| 99亚洲日韩国产精品无玛| 精品成人免费一区二区| 乱精品一区字幕二区| 韩国视频资源一区二区三区| 日本精品少妇一区二区三区| 18禁在线播放点击进入| 中国人做受免费视频| 青春娱乐视频精品分类| 一级特黄大片欧美久久久| 天天躁日日摸久久久精品| 欧美激情精品久久久久久| 美日韩精品无码?v专区久久久| 亚洲av成人片色在线观看| 欧美精品一区二区三区作者| 亚洲精品一区 精品二区| 无码国产高潮一区二区| 亚洲欧美成人久久综合中文网| 欧美一区二区三区婷婷五月| 亚洲欧美日韩高清综合678| 日韩av一区二区免费网址| 男女性杂交内射女bbwxz| 国产三级精品普通话| 国产欲女高潮抽搐出白浆| 无码专区国产精品第一页| 67194熟妇在线观看线路1| 亚洲综合在线视频| 色综亚洲日本w在线| 国产视频一二三区| 一本大道在线无码一区| jizz中国免费在线播放麻豆视频| 中文字幕丰满伦子无码| 亚洲一区av无码少妇电影| 91国拍精品色嫩亚洲一区偷拍| 最新亚洲一区二区在线| 亚洲午夜一级AV手机在线播放| 亚洲精品毛片一级av网站软件| 一级a爱做片免费观看国产| 密臀av中文字幕在线播放| 精品国产三级a∨在线欧美| 午夜放荡视频人与禽| 中文字幕av一区,二区,三区| 狠狠色婷婷狠狠狠亚洲综合| 中文字幕人妻一区二区五月天色| 国产精品精品自在线拍| 国产日韩av播放在线不卡| 日韩AV无码久久永久10| 国产aⅴ精品一区二区久久| 伊人久久大香线蕉综合75| 久久婷婷综合97色一本一本| 婷婷国产亚洲性色av网站| 污污的网站在线观看免费| 国产精品高潮呻吟久久| 日韩系列视频在线观看有码| 日韩精品中文字幕第一区| 日本视频一区二区三区四区| 亚洲av无码一区二区大桥未久| 亚洲AV日韩AV中文无码不卡 | 岛国av无码免费无禁网站| 国产视频亚洲一区| 最新日韩制服丝袜电影网站| 国产成人精品亚洲精品| 国产精品无码久久久| 人人妻人人澡人人爽精品日本| 亚洲经典无码视频| 最新国产麻豆aⅴ精品无码| 丁香花在线视频观看免费| 综合精品欧美日韩国产在线| 天天做天天摸天天爽天天爱| 色综合久久中文字幕无码| 久久综合亚洲国产色| 曰韩Av在线播放| 国产亚洲精品久久久久久久软件| 日韩一区精品视频一区二区| 亚洲欧美日韩中文字幕一区二区三区 | 欧美精品在线另类| 日韩欧美精品一级二级三免费播放| 亚洲国际精品久久久久久| 日韩中文字幕成人av网站| 四虎WWW永久在线精品| 丝袜美腿精品国产一区| 一本久久道综合久久道| 中国少妇黑人xxxx| 亚洲av永久无码天堂网| 欧洲av美女一区二区三区| 无码AV蜜臀AⅤ色欲在线观看| 51国产偷自视频区免费播放 | 99国产成人精品| 国产在线一区二区AV| 亚洲va韩国va欧美va天堂| 揭秘知花凛AV在线播放| 四虎影视在线永久免费观看| 亚洲国产精品乱码在线观看97| 国产成人无码Av在线播放无广告 | 亚洲欧洲中文字幕日产无码 | 国产免费不卡视频在线高清| av亚洲产国偷v产偷v自拍| 美女人妻在线不卡视频| 国产精品骚一区二区三区| 日韩午夜视频一区在线观看| 色欲综合视频天天天 | 国产精品18久久久久久vr| 亚洲AV无码乱码在线观AV| 国产亚洲欧美一区二区三区乱码| 尤物精品国产第一福利网站| 亚洲自拍偷拍视频网站| 91热久久免费频精品99| 99精品国产综合久久久久| 四川少妇WBBBB搡BBBB嗓| 永久免费的AV在线网无码| 日韩欧美亚洲三级在线| 亚洲国产精品日韩AV不卡在线| 男人的天堂在线精品视频| 18禁国产精品久久久久久免费| 色色无码人妻系列| 精品少妇爆乳无码av专用区 | 日本α级一区二区在线免费观看| 2021久久国自产拍精品| 亚洲国产aⅴ精品一区二区三区| 久久精品国产99国产精品亚洲| 欧美精品一区二区精油| 婷婷综合久久狠狠色99h| 久久只精品99品免费久23| 精品国产乱码久久久久久郑州公司 | 日韩欧美精品中文字幕久久| 国产欧美在线一区二区三| 日韩一区二区精品久久| 色综合网天天综合色中文| 久久免费口爆视频| 亚洲精品456在在线播放| 欧美激情肉欲高潮视频| 日韩无码精品专区| 亚洲欧美日韩中文字幕一区二区三区 | 成人综合亚洲欧美一区h| 欧美日韩加勒比精品一区| 成在人线av无码免费看网站 | 国产成人一区二区不卡免费视频| 更新亚洲国产福利午夜精品91视频免费日韩S一级 | 欧洲一区二区三区91日韩| 午夜精选在线观看| 午夜精品福利视频网站 | 国内A∨免费播放| 在线日本视频午夜毛片| 亚洲精品毛片一级av网站软件| 深爱激动情一区二区三区| 亚洲精品偷拍无码不卡AV| 亚洲91精品黄网在线观看| 免费黄色一级a毛片在线播放| 久久伊人成色777综合网| 久久精品国产91精品亚洲高清| 欧美精品第1页WWW| 亚洲国产精品不卡一二三四五| 99久久精品视频一区二区| 在线看无码的免费网站| 国产精品肉丝尤物嫩草影院在线观看| 欧美日韩国产免费观看| 99人妻熟女国产精品日韩资电话 | 精品国产乱子伦一区| 一级国产做a爱的视频| 久久免费国产视频精品| 亚洲av综合久久无| 女教师大荫蒂毛茸茸| 亚洲无人区一区二区三区| 少妇一级片无码免费高清| 日日摸日日碰夜夜爽亚洲| 亚洲国产精品日韩高清秒播| 香港台湾免费经典AV毛片| 91成人在线观看免费| 激情啪啪视频国产免费| 无码人妻波多野结衣欧美| 国产亚洲精品福利在线无卡一| 男女一边做一边爽免费视频| 亚洲一区在线免费| 麻豆国产精品免费在线观看| 成 人 h 高 潮在 线 观 看| 国产麻豆精品视频一区二区| 欧美国产亚洲一区综合久久| 久久久国产精品网站| 86精品人妻一区二区三区四区| 欧美一级免费视频| 日韩美女在线观看一区| 亚洲蜜臀精品一区二区三区 | 色噜噜狠狠综曰曰曰| 久99频这里只精品| 国产高清在线精品二区| 无码日韩综合一区二区三区 | 最新亚洲春色AV无码专区| 国产乱码日韩一区二区三区| 欧美孕交VIVOESTV另类| 波多野结衣精品一区在线| 成人毛视频在线免费观看| 果冻传媒国产区二期| 精品h无遮挡在线看| 无码任你躁x7x7x7x7在线观看| 国产亚洲精品AAAA片在线播放 | 欧美日韩在线观看专区| 日韩一区二区三区在线播放| 在线观看亚洲日本综合| 天天躁日日摸久久久精品| 亚洲爆乳www无码专区| 亚洲欧美综合图一图二| 精品国产乱子伦一区| 欧美日韩国产不卡| 欧美精品日韩第一页| 国产亚洲欧洲av综合一区二区三区 | 99久久精品国产一区二区蜜芽| 熟女高潮一区二区三区69av| 好男人好社区好资源在线| 日韩精品中文字幕免费在线观看| 东京热无码一区二区AV| 亚州欧洲日本无在线码免费| 久久狠狠中文字幕2017| 亚洲精品午夜精品| 国产精品久久久久久熟女中| 中文字幕无码精品亚洲资源网久久 | 国产爆乳无码视频在线观看 | 国产精品系列久久丝袜| 亚洲欧美日韩一区二区三区在线 | 99九九99九九精彩视频| 精品一区二区三区免费视频| 国产亚洲精品线观看动态图| 日韩精品中文字幕免费在线观看 | 人人妻人人澡人人爽精品日本| 色综合中文综合网| 日韩人妻少妇精品视频在线| a级毛片18岁一上在线观看| 亚洲日韩精品无码AV海量| 国产综合亚洲日韩| 国产三级在线免费观看| 国产亚洲精品久久久无码网站 | 国产性生交XXXXX无码| 国产aⅴ激情无码久久久无码| 久久久久国产精品片区无码| 久久老子无码午夜精品秋霞| 亚洲爱爱无码专区| 久久久精品区二区三区免费牛牛| 国内欧美日韩一区二区三区| 久久亚洲精品成人综合| 国产成人亚洲综合无码精品 | 精品乱色一区二区中文字幕| 囯产精品无码一区二区三区AV| 亚洲欧美精品AAAAAA片| 久久久久Av免费无码久久| 另类国产精品一区二区| 国产精品露脸国语对白| 日韩精品国产精品一二三四在线| 精品少妇无码一区二区三批| 亚洲国产精品人久久电影app| 中文字幕亚洲精品无码| 免费国产欧美国日产a| 亚洲AⅤ成人精品无码| 四虎成人永久在线精品免费播放| 国产精品一区二区色欲AV| 午夜伦伦影院无码| 99爱在线精品视频免费观看| 色欲综合视频天天天| 国产探花在线精品一区二区| 网站资源多国产av| 国产51色综合久久免费| 国内精品一区二区三区四| 国产成人女人毛片视频在线| 亚洲成在人线aⅴ免费毛片| 无码专区日韩精品| 欧美日韩综合一区二区三区| 久久国产精品亚洲va麻豆| 尹人香蕉久久99天天拍| 国产精品欧美一区二区三区| 亚洲精品久久久9婷婷中文字幕| 亚洲精品成人av观看青青| 国产XXXX视频在线观看免费| 色噜噜国产精品视频一| 黑人与人妻无码中文视频| 亚洲国产精品免一区二区三区| 日本黄色爱爱视频网站| 国精产品一区一区二区三区视频 | 欧美日韩一区二区三区视频播放 | 久久丁香五月天综合网| 久久精品国产清自在天天线| 亚洲精品亚洲国产3区| 久久久国产精品黄毛片| 精品久久久久久久免费影院| 中文字幕精品在线一区二区| 深爱激动情一区二区三区| 国产亚洲女人久久久毛片| 久久久亚洲熟妇一区二区| 机机对机机手机免费下载版大全| 亚洲婷婷综合色高清在线| 亚洲女人的天堂白慰| 天天做天天摸天天爽天天爱| 在线高清国产天堂| 69亚洲日本va中文字幕婷婷| 国产精品9999久久久久| 精品无码AV无码专区| 无码精品人妻一区二区三区蜜桃| 精品丝袜人妻久久久久久91| 免费人成短视频在线观看网站| 亚洲大尺码专区在线观看| 亚洲∧V无码乱码在线观看| 久久综合一区网址| f91麻豆国产福利精品| 极品人妻少妇一区二区三区| 免费成人日韩精品视频| 久久久久久国产精品三级| 久久久久国产一区二区三区寡妇| 激情综合五月丁香五月激情| 日韩欧美国产综合在线播放| 成人美女视频一区二区三区| 国产在线观看高清精品| 黄色av日韩中文字幕| 中出内射颜射骚妇| 歐美另類在線觀看視頻網站| 婷婷五月天激情电影| 中文字幕无码精品亚洲资源网久久 | 日本少妇高潮喷水视频| 欧美精品超清视频每日更新| 无码专区日韩精品| 国产a黄色三级三级三级| 亚洲无码毛片精品视频| 久久综合一区网址| 国内精品视频自在一区| 久久精品欧美亚洲一区二区三区| 情侣啪啪视频免费网站97| 天天日天天日天天射天天射| 国产九九热这里只有精品| 精品国产天堂综合一区在线| 亚州欧洲日本无在线码免费 | 国产精品自在拍首页视频| 国产成人自拍在线播放| 亚洲欧美日韩中文字幕一区二区三区| 中文字幕av一区,二区,三区| 成年无码av片在线| 伊人久久大香线蕉综合75| 亚洲成av人一级牲交片| 日韩av中文一区二区三区| 国产精品亚洲综合第一页| 人妻中文乱码在线网站| 国产91激情在线观看| 国产乱妇乱子在线播视频播放网站 | 久久青青草原精品国产| B站永久看片免费| JAPANESE熟女俱乐部| 最新不卡av手机在线影院| 在线观看精品国产福利片一香蕉人…`| 久久无码精品一区二区av| 午夜精品一区二区三区国产| 在线日韩AV永久免费观看| 久中文字幕在线一区二区| 国产精品美女乱子伦高潮| 精品露脸国产偷人在视频| 玩弄人妻少妇精品视频| 成人一区二区免费视频| 一个人看的视频观看免费| 亚洲无人区一区二区三区| 强开乳罩摸双乳吃奶羞羞www| 国产91色综合久久免费分享| 韩国无码av片在线电影网站| 亚洲精品一区二区成人| 国产精品96久久久久久| 宝贝dj音乐网dj舞曲| 国产一区网站视频在线观看| 美女任你摸毛片av免费| 欧美成人精品高清在线观看| 中文字幕无线乱码人妻| 人妻系列av无码专区免费| 国产l精品国产亚洲区| 日韩精品一区二区三区四区66| 人妻无码AⅤ中文系列久久免费| 国产成人久久精品激情| 无码片在线观看视频| 91人人捏人人模人人爽| 欧美亚洲国产日韩精品自拍| 欧美日韩精品久久| 亚洲精品91香蕉综合区| 亚洲人成网亚洲欧洲无码久久| 男人的天堂在线精品视频| 无码中文人妻在线一区| chinese网站精品亚洲| 激情综合五月婷婷丁香啪啪| 欧美日韩免费在线一区二区三区| 久久婷婷五夜综合色频| 国产一二三区韩国女主播| …日韩人妻无码精品一专区 | 久久免费口爆视频| 成人午夜无码一级在线播放蜜臀 | 国产乱人视频免费观看| 亚洲免费观看视频| 国产亚洲3P无码一区二区| 亚洲一区二区三区乱码| 另类姓老熟妇bbwbbw| 国产欧美日韩精品A在线观看| 色狠狠色综合久久久绯色AⅤ影视 全免费又大粗又黄又爽少妇片 | 久久久久国产成人精品电影| 欧美又粗又硬又爽直播大片| 亚洲人成人77777在线播放| 国产日韩厂亚洲字幕中文| 国产精品高清99| 狠狠色噜噜狠狠狠狠97| 国内精品高清在线看| 无码一区二区三区亚洲人妻| 热久久久久香蕉无品码| 久久无码国产日本欧美| 黄页毛片网站大全在线免费观看 | 色狠狠色综合久久久绯色图| av一区二区三区在线看片| 国产l精品国产亚洲区| 97人人超碰国产精品| 午夜精品成人一区二区| 亚洲精品性成人午夜剧场| 国产在线不卡一区免费视频| 香蕉在线精品视频在线| 精品久久久久久亚洲综合网站| 国内精品伊人久久久久影院对白| 乱人伦中文视频在线| 欧美国产日产一区二区| 日韩精品人妻午夜一区二区三区| 综合三区后入内射国产馆| 亚洲人成网亚洲欧洲无码| 野花香在线视频免费观看大全| 一级特黄录像免费播放中文| 亚洲中文日韩乱码av| 女avwww无套白浆流出| 国产精品_国产精品_K频道| 国产精品性感美女av| 九九热这里只有精品30| 亚洲a∨永久综合在线观看尤物| 国产成人无码免费网站| 一个人的视频在线观看WWW免费无码 | 惠民福利精品国产免费一区二区三区| 日韩精品一区二区三区中文不卡 | 99精品视频在线观看15| 超碰人人操天天干| 亚洲中文日韩乱码av| 日韩专区一区二区在线播放| 日本精品中文一区二区三区| 亚洲成a人片在线观看中文无码| 国产精品久久人妻无码网站一区| 久久夏同学国产免费观看| 美女的胸又黄又www网站| 日韩欧美另类卡通在线视频 | 久久天天躁夜夜躁狠狠躁2014| 在线免费观看电影| 美女大黄大色一级特级毛片| 亚洲日韩在线观看免费视频 | 女性高爱潮AAAA级视频试看| 久久夏同学国产免费观看 | 色噜噜国产精品视频一| 国产网友愉拍精品视频手机| 欧美成人AA大片| 亚洲Av无码专区国产乱码在线 | 免费精品国自产拍在线不卡| 国产高清视频免费人人爱 | 国产精品一区二区av白| 亚洲日日精AV无码区A片| 美女裸体自慰在线观看| 特黄男女交性A片激情视频| 国产免费牛牛视频手机版| 91精品欧美综合在线野草社区分 | 国精产品一区一区三区有限| 乱伦中文无码免费| 日本在线看片免费大黄| 国产成人精品免费午夜APP| 精品无码一区二区三区爱欲88| 亚洲旡码AV中文字幕| 成人做爰视频WWW在线观看| 999国产高清在线精品| 亚洲中文字幕综合网址| 新版中文在线资源| 亚州一区二区三区久久AA| 国产中文在线亚洲精品官网| 亚洲国产精品乱码在线观看97| 久久久久久99av无码免费网站| 国产在线观看免费人成视频| 亚洲春色AV无码专区在线播放| 久久久久国产韩日精品久久久久| 免费人成在线观看网站| 啪啪无码人妻丰满熟妇| 国产午夜片无码区在线播放| 在线观看91精品国产2021| 国产福利诱惑在线网站| av午夜无码免费播放器下载| 日韩在线观看一区二区三区| 精品国产aⅴ一区二区三区| 国产第1页欧美61794| CHINESE性内射高清5| 日韩中文人妻无码不卡一区| 蜜芽尤物原创AV在线播放| 国产污污网站一区二区三区| 在线观看高清三级综合| 天堂а√在线中文在线新版| 亚洲一区二区三区精品中文字幕 | 午夜精选在线观看| 久久精品无码观看TV| 久久久中日AB精品综合| 国产疯狂女同互磨高潮在线看| GOGOGO免费高清在线| 日韩欧美视频在线观看播放不卡| 国精产品一区一区二区三区视频| 亚洲国际精品久久久久久 | 亚洲人成无码网站久久99热国产| 午夜免费福利电影院| 人妻少妇精品一区二区三区| 国产aⅴ大篇网站| 欧美日韩国产在线观看一区二区| 国产精品免费在线播放| 中国无码人妻丰满熟妇| 无码国产中文国语版视频| 国产手机在线一区二区 | 亚洲欧洲日产国码无码久久99 | dy888午夜国产精品| 日韩亚洲欧美在线com| 亚洲91精品黄网在线观看| 国产三级不卡在线观看视频| 国产婷婷午夜精选| 欧美成人免费一级片| 国产成年无码久久久久下载| 久久国产综合精品| 久久精品国产2020| 亚洲色大成网站WWW永久男同| 白嫩少妇激情无码| 日韩欧美国产奇米影视在线观看| 97SE亚洲综合自在线| 亚洲香蕉中文日韩V日本| 一本大道在线无码一区| 精品久久久久久免费人妻| 亚洲精品性成人午夜剧场| 国产深夜男女无套内射| 国产ts系列紫苑吊带网袜| ?级毛片久久免费观看| 国产老熟女久久久久久| 久久99亚洲精品久久频| 爆乳美女高潮喷水动态图| 亚洲精品一区 精品二区| 久久亚洲春色中文字幕久久| 亚洲码欧美码一区二区三区| 欧美精品久久久久久久影视 | 成人做爰视频WWW在线观看| 四川少妇WBBBB搡BBBB嗓| 丝袜人妻中文字幕| 精品午夜国产福利观看| 欧洲精品久久久av无码电影| 2022国产区在线| 麻豆国产精品免费在线观看| 亚洲人成网亚洲欧洲无码| av无码一区二区三区在线| 最新国产裸模视频视频在线观看| 日本乱中文字幕系列| 欧美亚洲国产日韩精品自拍| 国产精品高潮呻吟久久| 亚洲成AV人片在线观看无线| 欧美日韩免费做爰大片人| 超频人妻在线视频| 性欧美大胆无码免费视频一| 无码国产中文国语版视频| 人妻少妇精品无码专区二区| 日韩精品中文字幕免费在线观看| 农民人伦一区二区三区| 亚洲AV毛片成人精品网站| 亚洲精品久久久久国色天香 | 国产精日韩精品欧美精品不卡| 中文字字幕国产精品| 国产第一页久久亚洲| 日韩欧美国产一二三区在线| 欧美成人一卡二卡三卡| 欧美日韩一区二区精彩视视频| 欧美精品一区二区精品| 老熟妇乱子伦牲交视频欧美| 亚洲中文字幕无码卡通动漫野外| 亚洲欧美日韩一不卡二不卡| 成人欧美一区二区三区| 日韩欧美每日更新| 人妻精品国产一区二区| av无码一区二区三区在线| 伊大人香蕉综合在线视频| 蕾丝av无码专区在线观看| 亚洲日韩精品欧美一区二区| 成在线人免费视频| 亚洲乱码日产一区三区| 在线看av一区二区三区| 日韩精品视频一区在线| 一级特黄录像免费播放中文| 免费观看亚洲日韩av| 久久青青草原精品国产| 国产亚洲女人久久久毛片| 无码国产拍揄自揄精品视频| 亚洲重口啪啪一区| 久久只精品99品免费久23| 92成人午夜福利一区二区 | 好男人好社区好资源在线| 久99久精品免费视频热| 日韩欧美在线免费一区二区| 国产专区一区二区三区免费| 免费观看av一区二区三区| 人妻夜夜爽天天爽| 亚洲人成一区二区不卡| 97人人添人澡人人爽超碰| 日韩久久精品五月综合| 久久久久无码精品国产情侣| 国产精品久久一级c片| 日韩av中文一区二区三区| 内射国产内射夫妻免费频道 | AV波多野结衣在线网站| 日韩系列视频在线观看有码| 日韩欧美国产综合在线播放| 999精品国产人妻无码梦乃爱华| 国产欧美日韩成人在线观看| 影视自拍高清少妇| 国产精品亚洲一区二区在线观看 | 国产高潮流白浆网站| 加比勒色综合久久| 国产视频一二三区| 日韩美女视频一区二区在线观看| 国产a级毛片久久久久久粗大 | 国产91色综合久久免费分享| 一区二区免费高清观看国产丝瓜| 漂亮少妇高潮A片XXXX| 国产成人高清亚洲一区| 日韩人妻精品无码一区二区三区| 日韩无码一区中文| 77se77亚洲欧美在线| 丰满少妇大力进入av亚洲| 91精品香蕉视频在线免费看| 久久精品中文字幕一区| 日韩欧美视频在线观看播放不卡| 欧美,日韩,国产一区二区| 一本久久a久久精品亚洲| www.日本国产在线观看 | 女人一级特黄大片| 91亚洲国产日韩在线成人| 欧美XXXX做受欧美88| 亚洲国产精品不卡一二三四五| 亚洲欧美精品一区国产| 亚州性无码不卡免费视频| 一级片好爽黄色视频| 久久婷婷丁香七月色综合| 超碰成人人人做人人爽| 2021久久国自产拍精品| 久久亚洲网站视频| 成人午夜无码一级在线播放蜜臀 | 欧美亚洲另类AⅤ图一区二区| 国产精品露脸脏话对白| 天天狠天天透天天爽| 一本一道波多野结衣AV中文| 亚洲熟妇无码AV不卡在线播放| 99热这里只有精品6免费| 国产热门事件黑料吃瓜网汇总| 精品国产18禁99久久久久久| 成人区人妻精品一熟女| 亚洲成AV人片天堂网久久| 国产九九热这里只有精品| 91精品久久久久综合| 人妻无码久久精品中文字幕| 日本无码观看一区二区三区| 精品无码国产av一区二区| 国产免费无遮挡吸乳视频| 中文字幕丰满伦子无码| 一本大道AV伊人久久综合| 人人妻人人澡人人爽精品日本| 日韩无码一区中文| 91超碰伊人五月天| 国产乱理伦片在线观看视频| 2021国产高清免费V无码| 国产精品美女乱子伦高潮| 久久97中文字幕一区二区| 人妻AV综合天堂一区| 手机看片av无码免费午夜| 午夜福利在线欧美激情| 久久成人国产精品免费| 丰满少妇xxxxx| 日韩专区一区二区在线播放| 久久久久久久久久艹视频| 一个人的视频在线观看WWW免费无码| 欧美一区二区三区免费A片| 国产永久嫩草大学生av| 国产不卡中文字幕在线电影| 在线观看欧美日韩一区二区不卡| 国产a黄色三级三级三级| 欧美精品黑人性xxxx| 亚洲日本一区二区三区在线不卡| 亚洲中文久久精品无码WW16| 国产精品对白交换绿帽视频| 国产高潮流白浆免费观看| 国产一女三男3p免费视频| 在线免费观看电视剧| 日本无码观看一区二区三区| 一个人看的在线www视频| 日本护士被强行XXXX中文字幕| 色欧美与xxxxx| 久久久精品国产av麻豆| 国产香蕉97碰碰视频免费看| 狠狠色婷婷狠狠狠亚洲综合| 免费精品无码成人片在线观看| 免费观看亚洲日韩av| 精品国产一区二区久久久久| 不卡精品xxx在线观看| av午夜福利一片免费看久久| 久久国产乱子伦免费精品| 内射国产内射夫妻免费频道| 欧美一区二区免费黄色| 日韩一区精品视频一区二区| 亚洲一区在线免费| 亚洲欧美日韩亚洲中文色| 99热这里只有精品最新地址获取| 久久无码爆乳一区二区三区| 99RE热视频这里只精品4| 国产精品狼人久久久久| 午夜精品一区二区三区在线观看| 亚洲久综合在线导航| 国产成A人亚洲精V品无码性色| 乱精品一区字幕二区| 99久久免费精品丝袜视频| 久久无码国产日本欧美| 天天狠天天透天天爽| 丁香社区伊人亚洲欧美| 亚洲国产一区二区a三级片| 精品亚洲国产专区在线观看| 国产欧美久久一区二区| 精品人妻www一区二区三区| 亚洲午夜久久久久| 人妻无码AⅤ中文字| 国内精品自线一区二区2021| 一二三四在线观看免费视频| 亚洲精品一区二区成人| 国产日韩视频一区二区三区| 亚洲日韩国产精品第一页一区| 久久99精品国产99久久6 | 欧美亚洲国产日韩精品自拍| 中文字幕一区二区三区乱码| 丁香婷婷八月精品国产| 久久精品美女a v毛片| 欧美日韩免费做爰大片人| 国产成人精品无码免费看夜聊软件| 国产aⅴ精品一区二区久久| 无码人妻精品一区二区蜜桃色| 亚洲最大色大成www网站| 亚洲精品国产乱码久久久1区| 国产女人爽到高潮a毛片| 中文毛片无遮挡高潮免费| 久久久精品国产av麻豆| 亚洲中文久久精品一码| 亚洲日韩精品欧美一区二区 | 一区二区三区在线免费| 亚洲欧美大片一区二区三区| 红桃视频一区二区三区| av午夜福利一片免费看久久| 婷婷综合久久狠狠色成人网| 99爱在线精品视频免费观看| 久久综合九色综合97婷婷女人| 中文毛片无遮挡高潮免费| 国产三级久久精品三级| 蜜臂精品毛片av一区二区三区| 在线精品亚洲观看不卡欧| 欧美日韩国产综合精品| 国产精品黄片AV| 天堂AV无码AV一区二区三区| 久久无码一区二区三区桃花| 国产剧情AV麻豆香蕉精品| 久久精品国产亚洲AV成人果| 国产精品综合区在线观看| 精品人妻少妇一区二区av| 四虎一区二区成人免费影院网址| 中文字幕亚洲综合久久菠萝蜜| 亚洲国产精品VA在线看黑人| 激情综合五月婷婷丁香| 国产精品麻豆美女在线| 日韩欧美国产一区二区三区另类| 亚洲精品自产拍在线观看亚瑟| 欧美国产日韩A在线视频| 激情啪啪视频国产免费| 国产ts系列紫苑吊带网袜 | 伊人精品成人久久综合97| 亚洲欧洲中文字幕日产无码| 丁香五月亚洲中文字幕| 日本黄网站三级三级三级| 精品国产sM免费AAA片| 亚洲无人区一区二区三区| 久久成人av少妇免费| 国产97亚洲精品无码成人| 国产亚洲三级片网站| 免费毛片欧洲毛片| 制服丝袜有码在线最新更新| 国产精品无码一区二区三区在| 中文字幕亚洲一区二区va在线| 国产成人久精品一区二区三区| 国产肥白大熟妇bbbb视频| 国产国产午夜福利视频在线观看| 免费无码AV片在线观看中文| 国产精品毛片一区二区在线| 国产aⅴ激情无码久久久无码| 久久综合乱子伦精品免费| 亚洲欧美伊人久久综合一区二区| 熟女精品蜜桃一区二区三区| 日韩欧美国产综合在线播放| 久久久国产一区二区三区四区小说 | 999精品国产人妻无码梦乃爱华 | 日本欧美亚洲高清在线观看| 精品一级少妇久久久久久久| 最近中文字幕免费国语6| 国产97亚洲精品无码成人| 最新dⅴd无码av在线| 国产精品网站视频| 亚洲愉拍自拍视频一区网手机版 | 99在线国内在线视频在线观看| 久久亚洲中文字幕精品一区四区| 三级久久久国产精品一区| 中文毛片无遮挡高潮免费| 中文国产日本在线播放免费| 日本一区二区三区四区高清不卡| 免费永久在线观看黄网站 | 免费观看亚洲日韩av| 亚洲精品久久久久久动漫| 青青草毛片在线视频免费看| 成人国产精品一区| 国产成人区一区二区三区3p| 亚洲国产午夜精品理论片妓女| 久久亚洲国产成人精品无码一区 | 色综合久久88中文字幕| 五月天亚洲成女图区| 国产大全久久激情综合电影| 亚洲一区在线免费| 香蕉啪视频在线观看视频久| 国产成人无码精品久久久免费 | 亚洲av专区一区二区| 亚洲第一区欧美国产综合86| 日韩av中文字幕亚洲精品| 欧美中日韩一区二区| 成人做爰视频WWW| 日韩一区二区精品久久| 国产免费mv大片人人电影播放器| 伦伦影院精品一区| 日本黄网站三级三级三级| 蜜臂精品毛片av一区二区三区| 国产人A片777777久久| 无码aⅴ精品日本无码久久| 成人国产精品一区二区网站公司 | 欧美日韩国产免费观看| 9精品人妻一区二区三区蜜桃| 精品伊人久久大香线蕉综合 | 伊人精品成人久久综合97| 国产精品碰碰现在自在拍| 在线日本视频午夜毛片| 久久精品国产亚洲AV成人果| 黄色视频福利网址www| 浪潮a∨无码在线| 久久精品二区三区四区| 久久综合九色综合97婷婷女人 | 四虎一区二区成人免费影院网址 | 91精品人妻一区二区三| 强壮公让我夜夜高潮a片视频 | GOGOGO免费高清在线| 思思99热久久精品在线6| caoporn国产精品免费视频| 97人人添人澡人人爽超碰| 人妻精品久久久久中文字幕19| 国产888视频在线观看| 亚洲成年网址青青草原| 成人區精品一區二區不卡| 色一情一区二区三,区四| 激情综合丁香久久久久久| 欧美日韩国产一区二区三区| 国产精品成人网在线观看| 亚洲Av无码专区国产乱码在线| 久久ZYZ资源站无码中文动漫| 久久老子无码午夜精品秋霞| 天美传媒妇乱XXXXX视频| 国产福利妇女毛片视频9| 爆乳熟妇一区二区三区霸乳| 无码午夜人妻一区二区三区不卡视频 | 久久国产香蕉一区精品天美| 国产成人Av一区二区三区不卡 | 久久综合给合久久狠狠狠97色| 国产av无码一区二区三区18| 国产精品久久久久香蕉| 亚洲日韩图片专区小说专区| 免费国产欧美国日产a| 亚洲精品综合一区二区三区在线| 人妻无码AⅤ中文字幕日韩| 人人妻人人澡人人爽曰本 | 无码午夜人妻一区二区三区不卡视频| 成人免费区一区二区三区| 日韩人妻精品无码一区二区三区| 日产欧美国产日韩精品| 日韩精品国产精品一二三四在线| 国产曰批全过程免费视频好爽| 亚洲国产欧美中文丝袜日韩 | 2021国产成人综合亚洲精品| 国一精品免费视频| 久久婷婷综合国产精品亚洲| 国产香蕉97碰碰视频免费看| 人妻人人澡人人添人人爽| 人人操人人爱在线超碰97| 在线观看免费人做人爱视频| 无码片在线观看视频| 国产一级特黄aa大片视频 | 国产在线精品一区二区三区在线 | 亚洲AV日韩AV中文无码不卡 | 久久久亚洲精华液精华液精华液| 国产综合激情在线亚洲第一页| 黄色大片国产在线| 欧美日韩人妻精品一二三区免费| 国产成人欧美日韩在线观看| 国产成人精品最新| 久久婷婷五月综合成人D啪| 97精品人妻一区二区三区在线| 欧美成人看片一区| 色综合久久88中文字幕| 久久国产亚洲精品超碰热 | 久久精品亚洲乱码中文字幕最| 精品一区二区三区免费毛片爱| 成年入口无限观看免费完整大片| 日本中文字幕成人在线视频| 国产伦子系列麻豆精品| 精品国产V无码大片在线看| 91精品中文字幕一区二区三区| 手机免费亚洲国产中文电影av| 不卡av手机在线免费观看| 丰满少妇猛烈进入A片88| 久久精品国产亚洲av香| 在线观看免费人成视频| 日韩精品一区二区中文在线观| 国产伦精品一区二区三区高清版禁| 亚洲欧洲日产无码av网站| 欧美国产综合日韩一区二区| 久久精品国产亚洲av蜜色| 在线看片免费人国产成视频| 欧美裸体xxxx极品少妇| 亚洲色大成网站www成永久网站| 国内丰满少妇一a级毛片视频| 国产精品亚洲精品日韩已满| 亚洲黄色三级毛神片在线看| 成人午夜福利视频镇东影视| 国产精品九九九久久九九| 国产00高中生在线网站| 国产精品伦子一区二区三区| 国产区精品一区二区不卡中文| 精品无码AV无码专区| 日本在线视频WWW色| 亚洲天堂欧美国产| 三级av在线免播放器| 久久精品一区二区中文字幕日本 | 无码人妻丰满熟妇啪啪7774| 亚洲色自偷自拍第一页| 人妻制服丝袜无码中文字幕| 91极品尤物在线观看播放| 日本一区二区三区国产欧美| 色噜噜亚洲男人的天堂| 久久中文精品无码中文字幕下载 | 亚洲国产小视频在线观看| 国产嘘嘘视频久久久国产盗摄| 三级综合欧美中文| 欧美日本无码一区二区三区 | 国产亚洲精品AA片在线观看| 国产成人精品2021| 成人国产精品一区| 中文字幕一区二区三区乱码| 黄色a国产三级三级三级| 精品在久久免费线中文字幕| 欧美日韩国产ⅴ?另类| 久久久国产精品网站| 久久国产对白老熟女| 国产好吊妞在线视频观看一| 免费国产成人福网站| 久久综合五月天激情| 亚洲H精品动漫在线观看| 99久久国产综合精品女图图等你| 日本欧美亚洲高清在线观看| 欧美又大又硬又粗BBBBB| 欧美13一14娇小性| 中文字幕亚洲一区二区va在线| 日韩欧美在线免费一区二区| 中文字幕无线乱码人妻| 丰满大屁股熟女啪播放| 国产一区二区三区视频免费观看| 99国产第一页在线| 亚洲最大日本三级在线观看| 欧美日韩岛国在线观看| 国产三级aⅤ在在线观看| 国产精品制服丝袜二区| 69视频在线精品国自产拍 | 久久国产精品最新一区| 最近中文字幕免费国语6| 亚洲人成伊人成综合网久久久 | 日韩精品人妻一区二区中| 国产精品人妻无码久久久郑州| 亚洲av中文无码字幕色最| 中文字幕不卡欧美日韩免费| 日韩中文人妻无码不卡一区| 免费国产成人高清在线视频| 国产自在线亚洲精品| 97精品人妻一区二区三区在线| 91九色精品无码片一区二区三区| CaoPoron在线视频| 97人人添人澡人人爽超碰| 日韩人妻少妇精品视频在线| 美女大黄大色一级特级毛片| 国一精品免费视频| 蜜国产精品jk白丝av网站| 国产区精品一区二区不卡中文| 精品无码AV人在线观看| 国内综合视频在线观看 不卡| 亚洲欧美日韩国产综合精品久久| 欧美综合自拍亚洲综合网| 国产欧美精品另类又又久久| 在线人成免费视频69国产| 亚洲国产综合av剧情| 日韩欧美国产奇米影视在线观看| 免费无遮挡无码永久视频| 黄色a国产三级三级三级| 国产日韩成人亚洲丁香婷婷| 久青草影院在线观看国产| 精品人妻无码中字系列| 97精品亚成在人线免视频| 欧美国产日韩在线视频| 欧美日韩国产ⅴ?另类| 国产aⅴ大篇网站| 日本成人中文字一二三区 | 欧美性猛交xxxx乱大交丰满| 一二三区无码视频| 日韩午夜视频一区在线观看| 一级a毛片免费观看久久精品| 国产热门事件黑料吃瓜网汇总| 夜夜澡亚洲碰人人爱av| 青青国产大帝AV| 日韩精品无码专区免费| 中文字幕人妻熟女AV| 国产在线精品99一区不卡日韩| 亚洲影视欧美国产| 久久精品国产亚洲av香| 欧美精品一二三区| 免费黄色一级a毛片在线播放| 久久亚洲制服丝袜综合网站| 天天躁日日摸久久久精品| 色呦呦一区二区三区| 在线视频日韩一区| 成人亚洲精品久久久久软件| 精品人人妻人人澡人人爽人人| 无遮挡激情视频在线观看| 综合自拍日本国产| 久久精品一区二区中文字幕日本 | 老熟女高潮一区二区三区1| 一级特黄录像免费播放中文| 91精品久久久久综合| 饥渴人妻欲求不满在线| 久久久亚洲欧洲日产无码AV| 国产成人亚洲精品无码车A| 亚洲国产综合av剧情| 天堂在\/线中文官网| 亚洲中文无码卡通动漫3d| 国产三级在线免费观看| 日韩av一区二区三区在线播放| 老熟女高潮一区二区三区1| 99无码人妻一区二区三区免费| 91免费无码视频| 最新日韩制服丝袜电影网站| 在线观看国产免费一级av| 国产国产精品人在线视| 国产又粗又长免费视频| 午夜三级a三级三点在线观看| 人妻精品国产一区二区| 日韩欧美国产一区二区三区另类| 秋霞无码久久一区二区 | 亚洲综合国产资源在线观看| 亚洲精品国产精品乱码不卡| SE01午夜精品无码| 亚洲午夜一区二区三区四区五区 | 国产乱子伦农村叉叉叉| 不卡av在线一区二区| 亚洲第一极品精品无码| 久久久受WWW免费人成| 在线亚洲AV成人无码中文| 亚洲人成网亚洲欧洲无码| 四虎永久在线精品国产免费| 国产精品乱码不卡在线观看| 无码国产精成人午夜视频不卡 | 中文无码妇乱子伦视频| 亚洲欧美精品一区国产| 最近更新2019中文字幕在线| 欧洲无码一区二区三区在线观看| 91香蕉视频免费版V1.4.2手机版下载| 99亚洲日韩国产精品无玛| 久久免费口爆视频| 国产成人精品一区二区A片带套| 无码人妻精品一区二区蜜桃百度| 亚洲影院天堂中文av色| а√中文在线资源库| 天天干天天操天天干| 99久久国产亚洲| 无码精品人妻一区二区三区蜜桃| 精品欧美日韩国产一区二区三区高清| 2024中文字幕一区二区三区| 亚洲国产高清一区二区在线| 乱中文字幕69一区二区四区| 中文无码成人免费视频在线观看| 久久久精品成人免费看片| 国产成人精品无码免费看夜聊软件| 国产做a爱视频在线观看| 国产av一区二区三区狼人香蕉| 国产精品毛片一区久久久| 国产一卡2卡3卡4卡精品| 国产精品女同久久久久久| 在线观看人成视频免费| 久久久久久国产精品三级| 直接能看的无码毛片| 夂久无码专区国产精品 | 中文字幕av一区三区| 99亚洲日韩国产精品无玛| 女教师大荫蒂毛茸茸| 变态另类AV天堂综合网| 欲求不满人妻一区二区三区| 国产猛男猛女超爽免费视频| 不卡无码在线观看视色| 熟妇人妻精品一区二区视频色欲| 91麻豆精品国产专区在线观看| 三级国产女主播在线观看| 久久婷婷综合97色一本一本| 国产欧美久久一区二区三区| 久久综合电影一区| 欧美日韩在线观看专区| 久久精品国产亚洲av香| 日本国产精品一区二区欧美| 国产一区二区三区在线看| 久久精品国产亚洲AV蜜臀色欲 | 国产日韩一区二区三区在线观看| 国产一区二区三区福利视频在线观看| 免费观看国产日本一区二区| 蜜月aⅴ国产精品| 老头把我添高潮了A片| 欧洲精品VA无码一区二区三区| wc女厕撒尿七ⅴ偷拍| 国产日韩成人一区二区三区| 成人美女视频一区二区三区| 日韩欧美永久精品免费nba | 中文字幕一区二区人妻| 曰韩Av在线播放| 日本免费一区二区三区毛片| 精品一区二区三区无码av孕妇| 欧美日韩在线第一区二区| 日本免费高清欧美一区二区 | 欧美精品黑人性xxxx| 日韩欧美一区二区三区视频| 亚洲视频 中文字幕 欧美在线| 成人毛片一区二区三四区| 亚洲∧V无码乱码在线观看| 国产黄片免费大全| 日韩无码精品专区| 国产精品久久人妻拍拍水牛影视| 最近更新2019中文字幕在线| 日韩欧美在线观看视频| 精品国产18禁99久久久久久| 一本一本久久α久久精品66| 久久国产综合视频| 亚洲中文久久精品一码| 亚洲A∨无码无线在线观看 | 女十八毛片水真大免费看| 亚洲欧美日韩一级在线| GOGOGO免费视频观看中文| 免费精品久久久久久成人av | 亚洲日韩在线观看免费视频| 亚洲人成网亚洲欧洲无码| 日韩精品一区二区亚洲av观看黄色| 日韩精品人妻一区二区中| 好涨好爽好大视频免费| 久久精品免视看国产成人| 制服丝袜有码在线最新更新| 内射欧美国产日韩高清在线 | 最近中文字幕高清免费大全1| 国产精品性色av| 一级黄片免费在线播放| 国产熟睡又污又黄又无遮挡的网站 | 国产一区二区三区在线看 | av一级不卡手机在线观看| 精品无码久久久久国产手机版| 天堂在\/线中文官网| 国产成人无码Av在线播放无广告| 国产AV无码专区亚洲AV高潮 | 99久久精品国产一区二区三| 国产乱老一区视频| 精品国产乱码久久久久人| 日韩在线精品一区| 国产成人亚洲综合无码精品| AV波多野结衣在线网站| 亚洲av日韩精品久久久久久 | 久久人妻无码毛片a片涩天使| 成人做爰www看视频软件| 中文字幕人成无码人妻综合社区| 无码人妻精品中文字幕| 四虎精品影院永久在线 | 亚洲国产综合精品| 国产成人一区二区不卡免费视频| 国产成人A精品国产欧美精品V | 18禁无码网站天天看| igao国产视频| 男人用嘴添女人下身免费视频| 国产亚洲A∨片在线观看| 美女视频免费永久观看的| chinese乱国产伦video| 精品丝袜人妻久久久久久91| 精品久久久久久亚洲国产300| 久久久久久国产精品三级| 与丰满少妇做爽视频| 免费观看亚洲日韩av| 久久天天躁狠狠躁夜夜av| 国产精品99女人久久久久久| 久久无码国产日本欧美| 亚洲一区国产二区日本三区| 午夜精品成人一区二区| 成人毛片一区二区三四区| 日本少妇高潮喷水视频| 日韩~欧美一中文字幕| 91av亚洲精品在线观看| 丝袜自慰一区二区三区| 一级国产做a爱的视频| 国产精品伦子一区二区三区| 亚洲精品久久久久久AV| 成人av影片一区二区三区| 久久久国产电影精品| 国产一二三区韩国女主播| 欧美一区日韩二区国产三区| 成人国产精品一区二区网站公司| 西西大胆午夜人体视频| 91极品尤物在线观看播放| 一级片好爽黄色视频| 91免费无码视频| 国内精品久久久久久久97牛牛| 国产一二三区韩国女主播| 国产欧美在线一区二区三| 日韩办公室激情丝袜无码视频| 午夜亚洲国产理论片亚洲2020| .国产十八女人成人免费`看| 久久精品国产亚洲av成人观看| 精品久久久亚洲一区二区| 国产第一页久久亚洲| 久久久91精品国产一区二区 | 美女裸体自慰在线观看| 欧美在线视频不卡| 亚洲欧美日韩国产综合精品二区| 在线观看国产黄片| 欧洲MV日韩MV国产| 亚洲AV无码乱码在线观AV| 欧美精品一区视频| 国产精品毛片更新无码| 日韩精品无码999一区二区三区| 国产精品白嫩精品| 丁香婷婷八月精品国产| 四川bbb搡bbb搡多| 欧洲MV日韩MV国产| 神马午夜伦理福利视频| 韩日综合成人中文字幕| 蜜芽尤物原创AV在线播放| 另类欧美亚洲日本| 日本在线看片免费大黄| 精品国产乱码久久久久久郑州公司| 精品无码AV无码专区| 欧美成人精品不卡视频在线观看| 日日摸日日碰夜夜爽亚洲| 欧美一区在线黑人大吊| 影视大全在线观看| 日韩欧美视频在线观看播放不卡| 978ee亚洲色欲影院东京热| 国产亚洲视频网站| 玖玖国产在线观看| 婷婷综合久久中文字幕蜜桃三电影 | 嫩草研究院久久国产| 中国老太婆BB无套内射| 人人爽人人爽人人片AV东京热| 久久久久亚洲欧洲A片| 国产精品人妻系列21P| 色综合网亚洲精品久久| 色综合久久综合欧美综合网| 亚洲色大成永久ww网站| 国产成人麻豆亚洲综合无码精品产 | 色呦呦在线免费观看| 狠狠色噜噜狠狠狠狠97| 亚洲综合图片区自拍区| 国产成人久精品一区二区三区| 精品国产一区二区三区av性色| 欧美人妻一区二区三区| 国产AV麻豆精品第一页| 中国美女一级毛片免费播放 | 精品国产乱码久久久久人| 国产亚洲精品福利在线无卡一| 国产精品夜夜嗨av| 免费国产成人福网站| 国产精一品亚洲二区在线播放| 在线国产小时av| 亚洲精品国产精品乱码不卡| 人妻高清视频一区二区三区| 成人久久伊人咪咪| 久久国产亚洲欧美久久| 青娱乐分类视频在线| 国产不卡高清视频在线观看| aⅴ视频分类国产在线视频| 亚洲熟女av一区二区三| 久久精品国产成人一区二区三区| 欧美精品欧美人与动人物牲| 91久久青草精品38国产| 免费一级特黄录像| 国产国产亚洲日本| 国产成人综合野草| 亚洲综合熟女久久久40P| 青青草国产午夜精品| 一本一道?Ⅴ无码中文字幕| 四虎永久在线精品免费a | 日韩欧美国产一二三区在线| 无码日韩综合一区二区三区| 97超级碰碰碰久久久久毛片 | bbwcuckold精品熟妇| 国产欧美久久久精品影院| 亚洲色无A片一区二区夜夜嗨| 午夜亚洲国产理论片亚洲2020| 自拍大香蕉一区二区三区| 无码粉嫩虎白一线天在线观看 | 成在线人免费视频| 免费秘羞羞视频观看网大全| 婷婷国产亚洲性色av网站| 永久无码国产AV| 欧美精品久久国产欧美日韩| 惠民福利亚洲欧美国产日韩在线观看| 中文字幕Av一区乱码| 欧美国产日产一区二区| 久久久久亚洲欧洲A片| 欧洲亚洲成人一区二区三区| 色综合视频一区二区三区44| 免费一级特黄录像| 成人一区二区三区黑人欧美| 亚洲av无码一区二区大桥未久| 天堂在\/线中文官网| 色视频一区二区三区国色| 成人区人妻精品一熟女| 国产农村一二三区| 日本无码视频一区二区三区| 亚洲国产成人久久综合人| 国产一区二区综合在线视频| 激情亚洲国产综合| 精品国产三级a∨在线欧美 | 免费天堂无码人妻成人av电影| 欧美浓毛系列nnuu22| 日韩精品无码专区免费| 欧美亚洲黄片大全| 国产在线精品一区二区三区在线| 国产大陆亚洲一区二区三区| 中国人做受免费视频| 久久久久99精品成人免费| 国产精品人妻久久无码不卡 | 中文乱码字幕国产中文乱码| 久久精品国产99国产精品亚洲 | 日韩亚国产欧美三级| 日韩精品不卡视频| 中文字幕人妻熟女AV| 亚洲欧美日韩亚洲中文色| 果冻传媒国产区二期| 国产精品久久久久香蕉| SE01午夜精品无码| 日本一区二区三区福利视频| 国产精品毛片一区二区在线| 成人一区二区三区黑人欧美| 99无码人妻一区二区三区免费| 思思99热久久精品在线6| 欧美VA天堂VA视频VA在线| 亚洲日韩欧美婷婷综合久久| 亚洲av专区一区二区| 辜莞允+无码+视频下载 | 国产AV无码专区亚洲AV高潮| 中文字幕无码一区二区免费| 成人片毛片A片免费网站小说| 欧美日韩另类国产一区二区三区| 成人午夜久久成人亚洲| 亚洲线精品久久一区二区三区| 久久久亚洲熟妇一区二区| 9i看片成人免费视频| 国产亚洲另类无码专区国语| 一本一本久久α久久精品66| 国产黄片免费大全| 在线观看欧美一区二区三区| 中文字幕一区二区人妻| 亚洲精品区午夜亚洲精品区| 久久人妻无码aⅴ毛片花絮| 欧美日韩岛国在线观看| 精品免费视频无码的不卡网站| 久久无码专区国产精品S| 久久大香伊蕉在人线观看热| 国产探花在线精品一区二区| 国产精品毛片a∨一区二区三区| 国产成人精品高清国产三级| 在线CRM网站建站| 日本成人一区二区三区在线| 丰满的少妇XXXXX青青青| 外国人做爰又粗又大im| 欧美日韩不卡一卡2卡三卡4卡5卡 国产在线97色永久免费视频 | 亚洲国产成人黄色视频| 久久国产精品最新一区| 免费精品久久天干天干| 国产成人Av一区二区三区不卡 | 乱中文字幕69一区二区四区| 精品无码一区二区三区爱欲88| 国产成人香蕉久久久久| 久久精品国产线看观看亚洲| 青草久久久国产线免费| 无码国产精品一区二区免费久久 | 大鷄巴亂倫的肉欲小说 | 国产亚洲av天天夜夜无码专区| 久久久精品国产一区二区| 卡一卡二卡三精品免费人口| 久久精品国产亚洲av成人动漫| 久久国产亚洲欧美久久| 亚洲国产精品无码专区影院| 欧美午夜丰满在线18影院| 521人成a天堂v| 日韩精品无码综合福利网站| 国产欧美精品久久久久久TⅤ| 国产美女黄色视频免费看| 在线观看无码国产无| 成人做爰A片免费播放金桔视频| 蜜芽av在线新地址| 日韩天堂在线旡码| 人妻人人澡人人添人人爽| 中文字幕一区二区三区蜜月| 国产精品女同久久久久久| 91亚洲国产日韩在线成人| 在线观看免费人做人爱视频| 少妇精品久久久久久一二三区| 亚洲国产综合二区三区四区| 久久99精品成人网站| 亚洲另类无码专区首| 久久中文字幕综合婷婷| 18禁黄久久久AAA片广濑美月| 久久久久国产精品7777| 中文无码在线加勒比| 丝袜白浆国产17c| 国产成人麻豆亚洲综合无码精品产 | 久久久久人妻av一区二区三区 | 亚洲高清aⅴ日本欧美视频 | 国产成人综合亚洲精品| 美女视频一区二区三区三州| 亚洲精品91香蕉综合区| 精品一区二区三区四区五区高| 亚洲色无码a片一区二区潘甜甜| 色综合久久综合欧美综合网| 一级看黄免费网站| 日产亚洲一区二区三区| 国产精品国内免费一区二区三区| 久久精品美女a v毛片| 激情不卡在线免费av| 国产精品无码久久AV| 日本一区二区三区高清免费| 国产美女精品久久久| av在线一区二区观看| 人妻中文乱码在线网站| 狠狠躁夜夜躁人人躁婷婷| 亚洲精品蜜桃久久久久久| 熟女高潮一区二区三区69av | 日本精品少妇一区二区三区| 亚洲精品性成人午夜剧场| 国产免费观看久久黄av片| 久久亚洲春色中文字幕久久| 欧美视频一区在线观看| 亚洲欧美日韩一级在线| 久热精品一区二区| 欧美午夜丰满在线18影院| JLZZJLZZ亚洲乱熟无码| 国产91激情在线观看| 日韩欧美永久精品免费nba| 国产激情久久久久老熟女影院| 色婷婷五月综合欧美图片| 国产欧美日韩第一页| VIDEOSGRAIS欧美另类| 日本视频一区二区三区四区| 综合在线一区 男同| 少妇又黑又粗又大无码A片直播| 精品久久久久久亚洲综合网站| 婷婷国产亚洲性色av网站| 伊人久久精品无码麻豆一区| 黄色午夜欧美视频| 人妻换人妻A片爽麻豆| 欧美精品黑人粗大视频| 特黄男女交性A片激情视频| 精品国产福利一区二区三区| 亚洲一级av无码毛片| 国产播放隔着超薄丝袜进入| 成人久久18免费网站入口| 三级黄色毛片视频看看| 精品国产麻豆一区二区三区| 亚洲国产欧美日韩欧美特级| 日韩在线三区不卡| 国产伦精品一区二区三区免 | 日韩精品无码综合福利网站| 欧美疯狂做受XXXX高潮免费看| 男生下面伸进女人下面的视频| 国产日韩欧美视频网址| 日韩欧美永久精品免费nba| 日韩av中文字幕亚洲精品| 亚洲日产无码中文字幕在线| 天堂а√在线中文在线新版| 国产成人人人爆出白浆| 久久国产成人av片免费看| 亚洲欧美综合精品二区| 人人做人人妻人人精| 亚洲综合日韩精品欧美综合区| 久久精品国产成人综合婷婷免费| 国产成人A精品国产欧美精品V| 久久免费国产视频精品| 日本三级在线看一区二区| 中国美女一级毛片免费播放| 16萝粉嫩自慰喷水| 精品久久久亚洲一区二区| 在线三级观看国产| 亚洲一卡2卡3卡四卡老狼| 一级黄色视频播放| 久久精品二区三区四区| 国产黑色丝袜免费网站| 国产精品亚洲日韩欧美| 久久精品国产99精品亚洲| chinese乱国产伦video| 日本欧美一区二区三区四区| 丁香五月亚洲综合深深爱| 无码一区二区三区裸体视频| 人妻中文无码视频在线| 91国拍精品色嫩亚洲一区偷拍| 精品久久久久久亚洲综合网站 | 亚洲国产成人无码影片| 久久久久国色AV免费观看性色| 欧美日韩亚洲激情在线观看| 国产亚洲精品久久777777美腿| 欧美肥胖老太videos另类| 亚洲国产精品不卡一二三四五 | 日韩国产综合在线| 厕所偷窥chinaxxxx| 国产在线不卡一区免费视频| 国产精品毛片一区二区在线| 亚洲中文字幕在线第二页| 国产人成91精品免费观看 | 精品国产免费一区二区三区香蕉| 无码精品人妻一区二区三区蜜桃| 久久青草精品欧美日韩精品| 国产在线观看高清精品| 天天做天天摸天天爽天天爱| 亚洲精品无码aⅤ片影音先锋| 男人的天堂在线精品视频| 精品久久久亚洲一区二区| 国产偷窥熟女高潮精品视频| 久久国产精品免费一区二区三区| 久久狠狠中文字幕2017| 97成人精品国语自产拍| 欧美国产日韩一区二区三区四区| 中文字幕一区二区三区不卡| 日韩一区二区三区免费在线播放| 久久综合给合久久狠狠狠97色| 好大好湿好硬顶到了好爽视频| 国产欧美日韩一区二区免费| 成人一区二区三区四区五区在线| 黄色a国产三级三级三级| 国产精品videossex国产高清 | 成人区精品一区二区毛片不卡| 精品一区二区三区无码免费视频| 一级做a爰片欧美一区| 色综合久久综合欧美综合网| 中文字幕国产精品一二区| 国产福利一区二区三区在线观看| 日本网站一区二区三区四区| 亚洲91无码精品一区在线播放| 噜噜av一区二区| 国产办公室秘书无码精品99| 日韩,欧美,一区二区三区| 欧美精品一区二区五| 日本欧美亚洲高清在线观看| 一级一区二区在免费线观看| 国产成人区一区二区三区3p| 无码人妻精品一二三区免费| 成在线人免费视频| 国产午夜精品一区二区三区欧美| 狠狠色婷婷丁香综合久久| 亚洲综合久久一区二区| 亚欧洲精品在线视频免费观看| 久久精品亚洲蜜臀av不卡| 在线日韩视频一区二区三区| 国产91色在线精品三级| 黄色a国产三级三级三级| 久久99国产精品成人欧美| 日韩精品极品视频在线观看免费| 国产女人爽到高潮a毛片| 亚洲精品久久久久国产| 亚洲人成无码网WWW网站| 国产精品伦子一区二区三区| 国产精选之刘婷野战| 日本高清不码一区二区三区| 久久国产精品1区2区3区网页| 欧美日韩亚洲激情在线观看| 亚州中文字幕无码中文字幕| 亚洲人成无码网WWW网站| 爆乳美女高潮喷水动态图| 中文人妻熟妇乱又伦精品| 99久久国产综合精品女| 午夜精选在线观看| 国产成人av乱免费| 乱码AV麻豆丝袜熟女系列| 91国拍精品色嫩亚洲一区偷拍| 亚洲精品一区二区三在线观看| 日本亚洲中文无线码在线观看| 办公室艳妇潮喷视频| 国产精品成人网在线观看| 亚洲国产精品人久久电影app| 亚洲国产精品精华液999| 三年中文在线观看免费大全中国| 国产乱子伦视频三区| 国产精品露脸国语对白 | 中文字幕中文字幕第一页| 国产成人久精品一区二区三区| 成人久久伊人咪咪| 国产自91精品自在拍精选久久| 国产河南妇女毛片精品久久一| 99热这里只有精品最新地址获取| 日韩精品第一区二区三区,| 亚洲日韩图片专区小说专区| 国产精品人鲁杂交黄色片| 国产精品久久久久久妇女| 中文字幕高清免费不卡视频| 久久久久国产成人精品电影| 亚洲日本一区二区一本一道| 性夜夜春夜夜爽AA片A| 色噜噜亚洲男人的天堂| 亚洲高清国产拍青青草原| 韩日综合成人中文字幕| 真人无码免费视频网页| 成人激情视频在线| 强壮公让我夜夜高潮a片视频| 一级a大片在线观看| 亚洲午夜福利1区2区| 精品中文字幕无码在线| 日韩av无码制服丝袜| 亚洲第一区欧美国产综合| 亚洲成a人无码成a无码| 国产日韩亚洲欧美看国产视频| 日韩精品一区二区三区中文不卡| 一级国产片一区二区三区| 一区二区三区在线免费观看视频| 日韩一级A片视频无码大尺度 | 惠民福利亚洲欧美国产日韩在线观看 | 久久精品国产自在一线| 亚洲欧美中文日韩v在线97| 玩两个丰满老熟女| 少妇av一区二区三区无码廣大網友最新| 欧洲亚洲韩国日本国产精品 | 亚洲午夜一级AV手机在线播放| 色综合久久88中文字幕| 丰满少妇大力进入av亚洲| 欧美视频成人在线| 无码乱人伦一区二区亚洲| 黄a在线网站福利高清|